Rogers–Ramanujan continued fraction

Continued fraction closely related to the Rogers–Ramanujan identities

The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument.

Domain coloring representation of the convergent A 400 ( q ) / B 400 ( q ) {\displaystyle A_{400}(q)/B_{400}(q)} of the function q 1 / 5 R ( q ) {\displaystyle q^{-1/5}R(q)} , where R ( q ) {\displaystyle R(q)} is the Rogers–Ramanujan continued fraction.

Definition

Representation of the approximation q 1 / 5 A 400 ( q ) / B 400 ( q ) {\displaystyle q^{1/5}A_{400}(q)/B_{400}(q)} of the Rogers–Ramanujan continued fraction.

Given the functions G ( q ) {\displaystyle G(q)} and H ( q ) {\displaystyle H(q)} appearing in the Rogers–Ramanujan identities, and assume q = e 2 π i τ {\displaystyle q=e^{2\pi i\tau }} ,

G ( q ) = n = 0 q n 2 ( 1 q ) ( 1 q 2 ) ( 1 q n ) = n = 0 q n 2 ( q ; q ) n = 1 ( q ; q 5 ) ( q 4 ; q 5 ) = n = 1 1 ( 1 q 5 n 1 ) ( 1 q 5 n 4 ) = q j 60 2 F 1 ( 1 60 , 19 60 ; 4 5 ; 1728 j ) = q ( j 1728 ) 60 2 F 1 ( 1 60 , 29 60 ; 4 5 ; 1728 j 1728 ) = 1 + q + q 2 + q 3 + 2 q 4 + 2 q 5 + 3 q 6 + {\displaystyle {\begin{aligned}G(q)&=\sum _{n=0}^{\infty }{\frac {q^{n^{2}}}{(1-q)(1-q^{2})\cdots (1-q^{n})}}=\sum _{n=0}^{\infty }{\frac {q^{n^{2}}}{(q;q)_{n}}}={\frac {1}{(q;q^{5})_{\infty }(q^{4};q^{5})_{\infty }}}\\[6pt]&=\prod _{n=1}^{\infty }{\frac {1}{(1-q^{5n-1})(1-q^{5n-4})}}\\[6pt]&={\sqrt[{60}]{q\,j}}\,\,_{2}F_{1}\left(-{\tfrac {1}{60}},{\tfrac {19}{60}};{\tfrac {4}{5}};{\tfrac {1728}{j}}\right)\\[6pt]&={\sqrt[{60}]{q\left(j-1728\right)}}\,_{2}F_{1}\left(-{\tfrac {1}{60}},{\tfrac {29}{60}};{\tfrac {4}{5}};-{\tfrac {1728}{j-1728}}\right)\\[6pt]&=1+q+q^{2}+q^{3}+2q^{4}+2q^{5}+3q^{6}+\cdots \end{aligned}}}

and,

H ( q ) = n = 0 q n 2 + n ( 1 q ) ( 1 q 2 ) ( 1 q n ) = n = 0 q n 2 + n ( q ; q ) n = 1 ( q 2 ; q 5 ) ( q 3 ; q 5 ) = n = 1 1 ( 1 q 5 n 2 ) ( 1 q 5 n 3 ) = 1 q 11 j 11 60 2 F 1 ( 11 60 , 31 60 ; 6 5 ; 1728 j ) = 1 q 11 ( j 1728 ) 11 60 2 F 1 ( 11 60 , 41 60 ; 6 5 ; 1728 j 1728 ) = 1 + q 2 + q 3 + q 4 + q 5 + 2 q 6 + 2 q 7 + {\displaystyle {\begin{aligned}H(q)&=\sum _{n=0}^{\infty }{\frac {q^{n^{2}+n}}{(1-q)(1-q^{2})\cdots (1-q^{n})}}=\sum _{n=0}^{\infty }{\frac {q^{n^{2}+n}}{(q;q)_{n}}}={\frac {1}{(q^{2};q^{5})_{\infty }(q^{3};q^{5})_{\infty }}}\\[6pt]&=\prod _{n=1}^{\infty }{\frac {1}{(1-q^{5n-2})(1-q^{5n-3})}}\\[6pt]&={\frac {1}{\sqrt[{60}]{q^{11}j^{11}}}}\,_{2}F_{1}\left({\tfrac {11}{60}},{\tfrac {31}{60}};{\tfrac {6}{5}};{\tfrac {1728}{j}}\right)\\[6pt]&={\frac {1}{\sqrt[{60}]{q^{11}\left(j-1728\right)^{11}}}}\,_{2}F_{1}\left({\tfrac {11}{60}},{\tfrac {41}{60}};{\tfrac {6}{5}};-{\tfrac {1728}{j-1728}}\right)\\[6pt]&=1+q^{2}+q^{3}+q^{4}+q^{5}+2q^{6}+2q^{7}+\cdots \end{aligned}}}

with the coefficients of the q-expansion being OEIS: A003114 and OEIS: A003106, respectively, where ( a ; q ) {\displaystyle (a;q)_{\infty }} denotes the infinite q-Pochhammer symbol, j is the j-function, and 2F1 is the hypergeometric function. The Rogers–Ramanujan continued fraction is then

R ( q ) = q 11 60 H ( q ) q 1 60 G ( q ) = q 1 5 n = 1 ( 1 q 5 n 1 ) ( 1 q 5 n 4 ) ( 1 q 5 n 2 ) ( 1 q 5 n 3 ) = q 1 / 5 n = 1 ( 1 q n ) ( n | 5 ) = q 1 / 5 1 + q 1 + q 2 1 + q 3 1 + {\displaystyle {\begin{aligned}R(q)&={\frac {q^{\frac {11}{60}}H(q)}{q^{-{\frac {1}{60}}}G(q)}}=q^{\frac {1}{5}}\prod _{n=1}^{\infty }{\frac {(1-q^{5n-1})(1-q^{5n-4})}{(1-q^{5n-2})(1-q^{5n-3})}}=q^{1/5}\prod _{n=1}^{\infty }(1-q^{n})^{(n|5)}\\[8pt]&={\cfrac {q^{1/5}}{1+{\cfrac {q}{1+{\cfrac {q^{2}}{1+{\cfrac {q^{3}}{1+\ddots }}}}}}}}\end{aligned}}}
( n m ) {\displaystyle (n\mid m)} is the Jacobi symbol.

One should be careful with notation since the formulas employing the j-function j {\displaystyle j} will be consistent with the other formulas only if q = e 2 π i τ {\displaystyle q=e^{2\pi i\tau }} (the square of the nome) is used throughout this section since the q-expansion of the j-function (as well as the well-known Dedekind eta function) uses q = e 2 π i τ {\displaystyle q=e^{2\pi i\tau }} . However, Ramanujan, in his examples to Hardy and given below, used the nome q = e π i τ {\displaystyle q=e^{\pi i\tau }} instead.[citation needed]

Special values

If q is the nome or its square, then q 1 60 G ( q ) {\displaystyle q^{-{\frac {1}{60}}}G(q)} and q 11 60 H ( q ) {\displaystyle q^{\frac {11}{60}}H(q)} , as well as their quotient R ( q ) {\displaystyle R(q)} , are related to modular functions of τ {\displaystyle \tau } . Since they have integral coefficients, the theory of complex multiplication implies that their values for τ {\displaystyle \tau } involving an imaginary quadratic field are algebraic numbers that can be evaluated explicitly.

Examples of R(q)

Given the general form where Ramanujan used the nome q = e π i τ {\displaystyle q=e^{\pi i\tau }} ,

R ( q ) = q 1 / 5 1 + q 1 + q 2 1 + q 3 1 + {\displaystyle R(q)={\cfrac {q^{1/5}}{1+{\cfrac {q}{1+{\cfrac {q^{2}}{1+{\cfrac {q^{3}}{1+\ddots }}}}}}}}}

f when τ = i {\displaystyle \tau =i} ,

R ( e π ) = e π 5 1 + e π 1 + e 2 π 1 + = 1 2 φ ( 5 φ 3 / 2 ) ( 5 4 + φ 3 / 2 ) = 0.511428 {\displaystyle R{\big (}e^{-\pi }{\big )}={\cfrac {e^{-{\frac {\pi }{5}}}}{1+{\cfrac {e^{-\pi }}{1+{\cfrac {e^{-2\pi }}{1+\ddots }}}}}}={\tfrac {1}{2}}\varphi \,({\sqrt {5}}-\varphi ^{3/2})({\sqrt[{4}]{5}}+\varphi ^{3/2})=0.511428\dots }

when τ = 2 i {\displaystyle \tau =2i} ,

R ( e 2 π ) = e 2 π 5 1 + e 2 π 1 + e 4 π 1 + = 5 4 φ 1 / 2 φ = 0.284079 {\displaystyle R{\big (}e^{-2\pi }{\big )}={\cfrac {e^{-{\frac {2\pi }{5}}}}{1+{\cfrac {e^{-2\pi }}{1+{\cfrac {e^{-4\pi }}{1+\ddots }}}}}}={{\sqrt[{4}]{5}}\,\varphi ^{1/2}-\varphi }=0.284079\dots }

when τ = 4 i {\displaystyle \tau =4i} ,

R ( e 4 π ) = e 4 π 5 1 + e 4 π 1 + e 8 π 1 + = 1 2 φ ( 5 φ 3 / 2 ) ( 5 4 + φ 3 / 2 ) = 0.081002 {\displaystyle R{\big (}e^{-4\pi }{\big )}={\cfrac {e^{-{\frac {4\pi }{5}}}}{1+{\cfrac {e^{-4\pi }}{1+{\cfrac {e^{-8\pi }}{1+\ddots }}}}}}={\tfrac {1}{2}}\varphi \,({\sqrt {5}}-\varphi ^{3/2})(-{\sqrt[{4}]{5}}+\varphi ^{3/2})=0.081002\dots }

when τ = 2 5 i {\displaystyle \tau =2{\sqrt {5}}i} ,

R ( e 2 5 π ) = e 2 π 5 1 + e 2 π 5 1 + e 4 π 5 1 + = 5 1 + ( 5 3 / 4 ( φ 1 ) 5 / 2 1 ) 1 / 5 φ = 0.0602094 {\displaystyle R{\big (}e^{-2{\sqrt {5}}\pi }{\big )}={\cfrac {e^{-{\frac {2\pi }{\sqrt {5}}}}}{1+{\cfrac {e^{-2\pi {\sqrt {5}}}}{1+{\cfrac {e^{-4\pi {\sqrt {5}}}}{1+\ddots }}}}}}={\frac {\sqrt {5}}{1+{\big (}5^{3/4}(\varphi -1)^{5/2}-1{\big )}^{1/5}}}-\varphi =0.0602094\dots }

when τ = 5 i {\displaystyle \tau =5i} ,

R ( e 5 π ) = e π 1 + e 5 π 1 + e 10 π 1 + = 1 + φ 2 φ + ( 1 2 ( 4 φ 3 φ 1 ) ( 3 φ 3 / 2 5 4 ) ) 1 / 5 φ = 0.0432139 {\displaystyle R{\big (}e^{-5\pi }{\big )}={\cfrac {e^{-\pi }}{1+{\cfrac {e^{-5\pi }}{1+{\cfrac {e^{-10\pi }}{1+\ddots }}}}}}={\frac {1+\varphi ^{2}}{\varphi +{\big (}{\frac {1}{2}}(4-\varphi -3{\sqrt {\varphi -1}})(3\varphi ^{3/2}-{\sqrt[{4}]{5}}){\big )}^{1/5}}}-\varphi =0.0432139\dots }

when τ = 10 i {\displaystyle \tau =10i} ,

R ( e 10 π ) = e 2 π 1 + e 10 π 1 + e 20 π 1 + = 1 + φ 2 φ + ( 3 1 + φ 2 4 φ ) 1 / 5 φ = 0.00186744 {\displaystyle R{\big (}e^{-10\pi }{\big )}={\cfrac {e^{-2\pi }}{1+{\cfrac {e^{-10\pi }}{1+{\cfrac {e^{-20\pi }}{1+\ddots }}}}}}={\frac {1+\varphi ^{2}}{\varphi +{\big (}3{\sqrt {1+\varphi ^{2}}}-4-\varphi {\big )}^{1/5}}}-\varphi =0.00186744\dots }

when τ = 20 i {\displaystyle \tau =20i} ,

R ( e 20 π ) = e 4 π 1 + e 20 π 1 + e 40 π 1 + = 1 + φ 2 φ + ( 1 2 ( 4 φ 3 φ 1 ) ( 3 φ 3 / 2 + 5 4 ) ) 1 / 5 φ = 0.00000348734 {\displaystyle R{\big (}e^{-20\pi }{\big )}={\cfrac {e^{-4\pi }}{1+{\cfrac {e^{-20\pi }}{1+{\cfrac {e^{-40\pi }}{1+\ddots }}}}}}={\frac {1+\varphi ^{2}}{\varphi +{\big (}{\frac {1}{2}}(4-\varphi -3{\sqrt {\varphi -1}})(3\varphi ^{3/2}+{\sqrt[{4}]{5}}){\big )}^{1/5}}}-\varphi =0.00000348734\dots }

and φ = 1 + 5 2 {\displaystyle \varphi ={\tfrac {1+{\sqrt {5}}}{2}}} is the golden ratio. Note that R ( e 2 π ) {\displaystyle R{\big (}e^{-2\pi }{\big )}} is a positive root of the quartic equation,

x 4 + 2 x 3 6 x 2 2 x + 1 = 0 {\displaystyle x^{4}+2x^{3}-6x^{2}-2x+1=0}

while R ( e π ) {\displaystyle R{\big (}e^{-\pi }{\big )}} and R ( e 4 π ) {\displaystyle R{\big (}e^{-4\pi }{\big )}} are two positive roots of a single octic,

y 4 + 2 φ 4 y 3 + 6 φ 2 y 2 2 φ 4 y + 1 = 0 {\displaystyle y^{4}+2\varphi ^{4}y^{3}+6\varphi ^{2}y^{2}-2\varphi ^{4}y+1=0}

(since φ {\displaystyle \varphi } has a square root) which explains the similarity of the two closed-forms. More generally, for positive integer m, then R ( e 2 π / m ) {\displaystyle R(e^{-2\pi /m})} and R ( e 2 π m ) {\displaystyle R(e^{-2\pi \,m})} are two roots of the same equation as well as,

[ R ( e 2 π / m ) + φ ] [ R ( e 2 π m ) + φ ] = 5 φ {\displaystyle {\bigl [}R(e^{-2\pi /m})+\varphi {\bigr ]}{\bigl [}R(e^{-2\pi \,m})+\varphi {\bigr ]}={\sqrt {5}}\,\varphi }

The algebraic degree k of R ( e π n ) {\displaystyle R(e^{-\pi \,n})} for n = 1 , 2 , 3 , 4 , {\displaystyle n=1,2,3,4,\dots } is k = 8 , 4 , 32 , 8 , {\displaystyle k=8,4,32,8,\dots } (OEIS: A082682).

Incidentally, these continued fractions can be used to solve some quintic equations as shown in a later section.

Examples of G(q) and H(q)

Interestingly, there are explicit formulas for G ( q ) {\displaystyle G(q)} and H ( q ) {\displaystyle H(q)} in terms of the j-function j ( τ ) {\displaystyle j(\tau )} and the Rogers-Ramanujan continued fraction R ( q ) {\displaystyle R(q)} . However, since j ( τ ) {\displaystyle j(\tau )} uses the nome's square q = e 2 π i τ {\displaystyle q=e^{2\pi \,i\tau }} , then one should be careful with notation such that j ( τ ) , G ( q ) , H ( q ) {\displaystyle j(\tau ),\,G(q),\,H(q)} and r = R ( q ) {\displaystyle r=R(q)} use the same q {\displaystyle q} .

G ( q ) = n = 1 1 ( 1 q 5 n 1 ) ( 1 q 5 n 4 ) = q 1 / 60 j ( τ ) 1 / 60 ( r 20 228 r 15 + 494 r 10 + 228 r 5 + 1 ) 1 / 20 {\displaystyle {\begin{aligned}G(q)&=\prod _{n=1}^{\infty }{\frac {1}{(1-q^{5n-1})(1-q^{5n-4})}}\\[6pt]&=q^{1/60}{\frac {j(\tau )^{1/60}}{(r^{20}-228r^{15}+494r^{10}+228r^{5}+1)^{1/20}}}\end{aligned}}}
H ( q ) = n = 1 1 ( 1 q 5 n 2 ) ( 1 q 5 n 3 ) = 1 q 11 / 60 ( r 20 228 r 15 + 494 r 10 + 228 r 5 + 1 ) 11 / 20 j ( τ ) 11 / 60 ( r 10 + 11 r 5 1 ) {\displaystyle {\begin{aligned}H(q)&=\prod _{n=1}^{\infty }{\frac {1}{(1-q^{5n-2})(1-q^{5n-3})}}\\[6pt]&={\frac {-1}{q^{11/60}}}{\frac {(r^{20}-228r^{15}+494r^{10}+228r^{5}+1)^{11/20}}{j(\tau )^{11/60}\,(r^{10}+11r^{5}-1)}}\end{aligned}}}

Of course, the secondary formulas imply that q 1 / 60 G ( q ) {\displaystyle q^{-1/60}G(q)} and q 11 / 60 H ( q ) {\displaystyle q^{11/60}H(q)} are algebraic numbers (though normally of high degree) for τ {\displaystyle \tau } involving an imaginary quadratic field. For example, the formulas above simplify to,

G ( e 2 π ) = ( e 2 π ) 1 / 60 1 ( 5 φ ) 1 / 4 1 R ( e 2 π ) = 1.00187093 H ( e 2 π ) = 1 ( e 2 π ) 11 / 60 1 ( 5 φ ) 1 / 4 R ( e 2 π ) = 1.00000349 {\displaystyle {\begin{aligned}G(e^{-2\pi })&=(e^{-2\pi })^{1/60}{\frac {1}{(5\,\varphi )^{1/4}}}{\frac {1}{\sqrt {R(e^{-2\pi })}}}\\[6pt]&=1.00187093\dots \\[6pt]H(e^{-2\pi })&={\frac {1}{(e^{-2\pi })^{11/60}}}{\frac {1}{(5\,\varphi )^{1/4}}}{\sqrt {R(e^{-2\pi })}}\\[6pt]&=1.00000349\ldots \end{aligned}}}

and,

G ( e 4 π ) = ( e 4 π ) 1 / 60 1 ( 5 φ 3 ) 1 / 4 ( φ + 5 4 ) 1 / 4 1 R ( e 4 π ) = 1.000003487354 H ( e 4 π ) = 1 ( e 4 π ) 11 / 60 1 ( 5 φ 3 ) 1 / 4 ( φ + 5 4 ) 1 / 4 R ( e 4 π ) = 1.000000000012 {\displaystyle {\begin{aligned}G(e^{-4\pi })&=(e^{-4\pi })^{1/60}{\frac {1}{(5\,\varphi ^{3})^{1/4}\,(\varphi +{\sqrt[{4}]{5}})^{1/4}}}{\frac {1}{\sqrt {R(e^{-4\pi })}}}\\[6pt]&=1.000003487354\dots \\[6pt]H(e^{-4\pi })&={\frac {1}{(e^{-4\pi })^{11/60}}}{\frac {1}{(5\,\varphi ^{3})^{1/4}\,(\varphi +{\sqrt[{4}]{5}})^{1/4}}}{\sqrt {R(e^{-4\pi })}}\\[6pt]&=1.000000000012\dots \end{aligned}}}

and so on, with φ {\displaystyle \varphi } as the golden ratio.

Derivation of special values

Tangential sums

In the following we express the essential theorems of the Rogers-Ramanujan continued fractions R and S by using the tangential sums and tangential differences:

a b = tan [ arctan ( a ) + arctan ( b ) ] = a + b 1 a b {\displaystyle a\oplus b=\tan {\bigl [}\arctan(a)+\arctan(b){\bigr ]}={\frac {a+b}{1-ab}}}
c d = tan [ arctan ( c ) arctan ( d ) ] = c d 1 + c d {\displaystyle c\ominus d=\tan {\bigl [}\arctan(c)-\arctan(d){\bigr ]}={\frac {c-d}{1+cd}}}

The elliptic nome and the complementary nome have this relationship to each other:

ln ( q ) ln ( q 1 ) = π 2 {\displaystyle \ln(q)\ln(q_{1})=\pi ^{2}}

The complementary nome of a modulus k is equal to the nome of the Pythagorean complementary modulus:

q 1 ( k ) = q ( k ) = q ( 1 k 2 ) {\displaystyle q_{1}(k)=q(k')=q({\sqrt {1-k^{2}}})}

These are the reflection theorems for the continued fractions R and S:

S ( q ) S ( q 1 ) = Φ {\displaystyle S(q)\oplus S(q_{1})=\Phi }
R ( q 2 ) R ( q 1 2 ) = Φ 1 {\displaystyle R(q^{2})\oplus R(q_{1}^{2})=\Phi ^{-1}}

The letter Φ {\displaystyle \Phi } represents the Golden number exactly:

Φ = 1 2 ( 5 + 1 ) = cot [ 1 2 arctan ( 2 ) ] = 2 cos ( 1 5 π ) {\displaystyle \Phi ={\tfrac {1}{2}}({\sqrt {5}}+1)=\cot[{\tfrac {1}{2}}\arctan(2)]=2\cos({\tfrac {1}{5}}{\pi })}
Φ 1 = 1 2 ( 5 1 ) = tan [ 1 2 arctan ( 2 ) ] = 2 sin ( 1 10 π ) {\displaystyle \Phi ^{-1}={\tfrac {1}{2}}({\sqrt {5}}-1)=\tan[{\tfrac {1}{2}}\arctan(2)]=2\sin({\tfrac {1}{10}}{\pi })}

The theorems for the squared nome are constructed as follows:

R ( q ) 2 R ( q 2 ) 1 R ( q ) R ( q 2 ) 2 = 1 {\displaystyle R(q)^{2}R(q^{2})^{-1}\oplus R(q)R(q^{2})^{2}=1}
S ( q ) 2 R ( q 2 ) 1 S ( q ) R ( q 2 ) 2 = 1 {\displaystyle S(q)^{2}R(q^{2})^{-1}\ominus S(q)R(q^{2})^{2}=1}

Following relations between the continued fractions and the Jacobi theta functions are given:

S ( q ) R ( q 2 ) = ϑ 00 ( q 1 / 5 ) 2 ϑ 00 ( q ) 2 5 ϑ 00 ( q 5 ) 2 ϑ 00 ( q ) 2 {\displaystyle S(q)\oplus R(q^{2})={\frac {\vartheta _{00}(q^{1/5})^{2}-\vartheta _{00}(q)^{2}}{5\,\vartheta _{00}(q^{5})^{2}-\vartheta _{00}(q)^{2}}}}
R ( q ) R ( q 2 ) = ϑ 01 ( q ) 2 ϑ 01 ( q 1 / 5 ) 2 5 ϑ 01 ( q 5 ) 2 ϑ 01 ( q ) 2 {\displaystyle R(q)\ominus R(q^{2})={\frac {\vartheta _{01}(q)^{2}-\vartheta _{01}(q^{1/5})^{2}}{5\,\vartheta _{01}(q^{5})^{2}-\vartheta _{01}(q)^{2}}}}

Derivation of Lemniscatic values

Into the now shown theorems certain values are inserted:

S [ exp ( π ) ] S [ exp ( π ) ] = Φ {\displaystyle S{\bigl [}\exp(-\pi ){\bigr ]}\oplus S{\bigl [}\exp(-\pi ){\bigr ]}=\Phi }

Therefore following identity is valid:

S [ exp ( π ) ] = tan [ 1 2 arctan ( Φ ) ] = tan [ 1 4 π 1 4 arctan ( 2 ) ] {\displaystyle S{\bigl [}\exp(-\pi ){\bigr ]}=\tan {\bigl [}{\tfrac {1}{2}}\arctan(\Phi ){\bigr ]}=\tan {\bigl [}{\tfrac {1}{4}}\pi -{\tfrac {1}{4}}\arctan(2){\bigr ]}}

In an analogue pattern we get this result:

R [ exp ( 2 π ) ] R [ exp ( 2 π ) ] = Φ 1 {\displaystyle R{\bigl [}\exp(-2\pi ){\bigr ]}\oplus R{\bigl [}\exp(-2\pi ){\bigr ]}=\Phi ^{-1}}

Therefore following identity is valid:

R [ exp ( 2 π ) ] = tan [ 1 2 arctan ( Φ 1 ) ] = tan [ 1 4 arctan ( 2 ) ] {\displaystyle R{\bigl [}\exp(-2\pi ){\bigr ]}=\tan {\bigl [}{\tfrac {1}{2}}\arctan(\Phi ^{-1}){\bigr ]}=\tan {\bigl [}{\tfrac {1}{4}}\arctan(2){\bigr ]}}

Furthermore we get the same relation by using the above mentioned theorem about the Jacobi theta functions:

S [ exp ( π ) ] R [ exp ( 2 π ) ] = S ( q ) R ( q 2 ) [ q = exp ( π ) ] = {\displaystyle S{\bigl [}\exp(-\pi ){\bigr ]}\oplus R{\bigl [}\exp(-2\pi ){\bigr ]}=S(q)\oplus R(q^{2}){\bigl [}q=\exp(-\pi ){\bigr ]}=}
= ϑ 00 ( q 1 / 5 ) 2 ϑ 00 ( q ) 2 5 ϑ 00 ( q 5 ) 2 ϑ 00 ( q ) 2 [ q = exp ( π ) ] = 1 {\displaystyle ={\frac {\vartheta _{00}(q^{1/5})^{2}-\vartheta _{00}(q)^{2}}{5\,\vartheta _{00}(q^{5})^{2}-\vartheta _{00}(q)^{2}}}{\bigl [}q=\exp(-\pi ){\bigr ]}=1}

This result appears because of the Poisson summation formula and this equation can be solved in this way:

R [ exp ( 2 π ) ] = 1 S [ exp ( π ) ] = 1 tan [ 1 4 π 1 4 arctan ( 2 ) ] = tan [ 1 4 arctan ( 2 ) ] {\displaystyle R{\bigl [}\exp(-2\pi ){\bigr ]}=1\ominus S{\bigl [}\exp(-\pi ){\bigr ]}=1\ominus \tan {\bigl [}{\tfrac {1}{4}}\pi -{\tfrac {1}{4}}\arctan(2){\bigr ]}=\tan {\bigl [}{\tfrac {1}{4}}\arctan(2){\bigr ]}}

By taking the other mentioned theorem about the Jacobi theta functions a next value can be determined:

R [ exp ( π ) ] R [ exp ( 2 π ) ] = R ( q ) R ( q 2 ) [ q = exp ( π ) ] = {\displaystyle R{\bigl [}\exp(-\pi ){\bigr ]}\ominus R{\bigl [}\exp(-2\pi ){\bigr ]}=R(q)\ominus R(q^{2}){\bigl [}q=\exp(-\pi ){\bigr ]}=}
= ϑ 01 ( q ) 2 ϑ 01 ( q 1 / 5 ) 2 5 ϑ 01 ( q 5 ) 2 ϑ 01 ( q ) 2 [ q = exp ( π ) ] = 5 4 1 5 4 + 1 = 5 4 1 = tan [ arctan ( 5 4 ) 1 4 π ] {\displaystyle ={\frac {\vartheta _{01}(q)^{2}-\vartheta _{01}(q^{1/5})^{2}}{5\,\vartheta _{01}(q^{5})^{2}-\vartheta _{01}(q)^{2}}}{\bigl [}q=\exp(-\pi ){\bigr ]}={\frac {{\sqrt[{4}]{5}}-1}{{\sqrt[{4}]{5}}+1}}={\sqrt[{4}]{5}}\ominus 1=\tan {\bigl [}\arctan({\sqrt[{4}]{5}}\,)-{\tfrac {1}{4}}\pi {\bigr ]}}

That equation chain leads to this tangential sum:

R [ exp ( π ) ] = R [ exp ( 2 π ) ] tan [ arctan ( 5 4 ) 1 4 π ] {\displaystyle R{\bigl [}\exp(-\pi ){\bigr ]}=R{\bigl [}\exp(-2\pi ){\bigr ]}\oplus \tan {\bigl [}\arctan({\sqrt[{4}]{5}}\,)-{\tfrac {1}{4}}\pi {\bigr ]}}

And therefore following result appears:

R [ exp ( π ) ] = tan [ 1 4 arctan ( 2 ) + arctan ( 5 4 ) 1 4 π ] {\displaystyle R{\bigl [}\exp(-\pi ){\bigr ]}=\tan {\bigl [}{\tfrac {1}{4}}\arctan(2)+\arctan({\sqrt[{4}]{5}}\,)-{\tfrac {1}{4}}\pi {\bigr ]}}

In the next step we use the reflection theorem for the continued fraction R again:

R [ exp ( π ) ] R [ exp ( 4 π ) ] = Φ 1 {\displaystyle R{\bigl [}\exp(-\pi ){\bigr ]}\oplus R{\bigl [}\exp(-4\pi ){\bigr ]}=\Phi ^{-1}}
R [ exp ( 4 π ) ] = tan [ 1 2 arctan ( 2 ) ] R [ exp ( π ) ] {\displaystyle R{\bigl [}\exp(-4\pi ){\bigr ]}=\tan {\bigl [}{\tfrac {1}{2}}\arctan(2){\bigr ]}\ominus R{\bigl [}\exp(-\pi ){\bigr ]}}

And a further result appears:

R [ exp ( 4 π ) ] = tan [ 1 4 arctan ( 2 ) arctan ( 5 4 ) + 1 4 π ] {\displaystyle R{\bigl [}\exp(-4\pi ){\bigr ]}=\tan {\bigl [}{\tfrac {1}{4}}\arctan(2)-\arctan({\sqrt[{4}]{5}}\,)+{\tfrac {1}{4}}\pi {\bigr ]}}

Derivation of Non-Lemniscatic values

The reflection theorem is now used for following values:

R [ exp ( 2 π ) ] R [ exp ( 2 2 π ) ] = Φ 1 {\displaystyle R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}\oplus R{\bigl [}\exp(-2{\sqrt {2}}\,\pi ){\bigr ]}=\Phi ^{-1}}

The Jacobi theta theorem leads to a further relation:

R [ exp ( 2 π ) ] R [ exp ( 2 2 π ) ] = R ( q ) R ( q 2 ) [ q = exp ( 2 π ) ] = {\displaystyle R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}\ominus R{\bigl [}\exp(-2{\sqrt {2}}\,\pi ){\bigr ]}=R(q)\ominus R(q^{2}){\bigl [}q=\exp(-{\sqrt {2}}\,\pi ){\bigr ]}=}
= ϑ 01 ( q ) 2 ϑ 01 ( q 1 / 5 ) 2 5 ϑ 01 ( q 5 ) 2 ϑ 01 ( q ) 2 [ q = exp ( 2 π ) ] = tan [ 2 arctan ( 1 3 5 1 3 6 30 + 4 5 3 + 1 3 6 30 4 5 3 ) 1 4 π ] {\displaystyle ={\frac {\vartheta _{01}(q)^{2}-\vartheta _{01}(q^{1/5})^{2}}{5\,\vartheta _{01}(q^{5})^{2}-\vartheta _{01}(q)^{2}}}{\bigl [}q=\exp(-{\sqrt {2}}\,\pi ){\bigr ]}=\tan {\bigl [}2\arctan({\tfrac {1}{3}}{\sqrt {5}}-{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {30}}+4{\sqrt {5}}}}+{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {30}}-4{\sqrt {5}}}}\,)-{\tfrac {1}{4}}\pi {\bigr ]}}

By tangential adding the now mentioned two theorems we get this result:

R [ exp ( 2 π ) ] R [ exp ( 2 π ) ] = Φ 1 tan [ 2 arctan ( 1 3 5 1 3 6 30 + 4 5 3 + 1 3 6 30 4 5 3 ) 1 4 π ] {\displaystyle R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}\oplus R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}=\Phi ^{-1}\oplus \tan {\bigl [}2\arctan({\tfrac {1}{3}}{\sqrt {5}}-{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {30}}+4{\sqrt {5}}}}+{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {30}}-4{\sqrt {5}}}}\,)-{\tfrac {1}{4}}\pi {\bigr ]}}
R [ exp ( 2 π ) ] = tan [ arctan ( 1 3 5 1 3 6 30 + 4 5 3 + 1 3 6 30 4 5 3 ) 1 4 arccot ( 2 ) ] {\displaystyle R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}=\tan {\bigl [}\arctan({\tfrac {1}{3}}{\sqrt {5}}-{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {30}}+4{\sqrt {5}}}}+{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {30}}-4{\sqrt {5}}}}\,)-{\tfrac {1}{4}}\operatorname {arccot}(2){\bigr ]}}

By tangential substraction that result appears:

R [ exp ( 2 2 π ) ] R [ exp ( 2 2 π ) ] = Φ 1 tan [ 2 arctan ( 1 3 5 1 3 6 30 + 4 5 3 + 1 3 6 30 4 5 3 ) 1 4 π ] {\displaystyle R{\bigl [}\exp(-2{\sqrt {2}}\,\pi ){\bigr ]}\oplus R{\bigl [}\exp(-2{\sqrt {2}}\,\pi ){\bigr ]}=\Phi ^{-1}\ominus \tan {\bigl [}2\arctan({\tfrac {1}{3}}{\sqrt {5}}-{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {30}}+4{\sqrt {5}}}}+{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {30}}-4{\sqrt {5}}}}\,)-{\tfrac {1}{4}}\pi {\bigr ]}}
R [ exp ( 2 2 π ) ] = tan [ 1 4 arccot ( 2 ) arctan ( 1 3 5 1 3 6 30 + 4 5 3 + 1 3 6 30 4 5 3 ) ] {\displaystyle R{\bigl [}\exp(-2{\sqrt {2}}\,\pi ){\bigr ]}=\tan {\bigl [}{\tfrac {1}{4}}\operatorname {arccot}(-2)-\arctan({\tfrac {1}{3}}{\sqrt {5}}-{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {30}}+4{\sqrt {5}}}}+{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {30}}-4{\sqrt {5}}}}\,){\bigr ]}}

In an alternative solution way we use the theorem for the squared nome:

R [ exp ( 2 π ) ] 2 R [ exp ( 2 2 π ) ] 1 R [ exp ( 2 π ) ] R [ exp ( 2 2 π ) ] 2 = 1 {\displaystyle R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}^{2}R{\bigl [}\exp(-2{\sqrt {2}}\,\pi ){\bigr ]}^{-1}\oplus R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}R{\bigl [}\exp(-2{\sqrt {2}}\,\pi ){\bigr ]}^{2}=1}
{ R [ exp ( 2 π ) ] 2 R [ exp ( 2 2 π ) ] 1 + 1 } { R [ exp ( 2 π ) ] R [ exp ( 2 2 π ) ] 2 + 1 } = 2 {\displaystyle {\bigl \{}R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}^{2}R{\bigl [}\exp(-2{\sqrt {2}}\,\pi ){\bigr ]}^{-1}+1{\bigr \}}{\bigl \{}R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}R{\bigl [}\exp(-2{\sqrt {2}}\,\pi ){\bigr ]}^{2}+1{\bigr \}}=2}

Now the reflection theorem is taken again:

R [ exp ( 2 2 π ) ] = Φ 1 R [ exp ( 2 π ) ] {\displaystyle R{\bigl [}\exp(-2{\sqrt {2}}\,\pi ){\bigr ]}=\Phi ^{-1}\ominus R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}}
R [ exp ( 2 2 π ) ] = 1 Φ R [ exp ( 2 π ) ] Φ + R [ exp ( 2 π ) ] {\displaystyle R{\bigl [}\exp(-2{\sqrt {2}}\,\pi ){\bigr ]}={\frac {1-\Phi R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}}{\Phi +R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}}}}

The insertion of the last mentioned expression into the squared nome theorem gives that equation:

{ R [ exp ( 2 π ) ] 2 Φ + R [ exp ( 2 π ) ] 1 Φ R [ exp ( 2 π ) ] + 1 } R [ exp ( 2 π ) ] { 1 Φ R [ exp ( 2 π ) ] } 2 { Φ + R [ exp ( 2 π ) ] } 2 + 1 = 2 {\displaystyle {\biggl \{}R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}^{2}{\frac {\Phi +R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}}{1-\Phi R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}}}+1{\biggr \}}{\biggl \langle }R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}{\frac {{\bigl \{}1-\Phi R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}{\bigr \}}^{2}}{{\bigl \{}\Phi +R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}{\bigr \}}^{2}}}+1{\biggr \rangle }=2}

Erasing the denominators gives an equation of sixth degree:

R [ exp ( 2 π ) ] 6 + 2 Φ 2 R [ exp ( 2 π ) ] 5 5 Φ 1 R [ exp ( 2 π ) ] 4 + {\displaystyle R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}^{6}+2\,\Phi ^{-2}R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}^{5}-{\sqrt {5}}\,\Phi ^{-1}R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}^{4}+}
+ 2 5 Φ R [ exp ( 2 π ) ] 3 + 5 Φ 1 R [ exp ( 2 π ) ] 2 + 2 Φ 2 R [ exp ( 2 π ) ] 1 = 0 {\displaystyle +2\,{\sqrt {5}}\,\Phi R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}^{3}+{\sqrt {5}}\,\Phi ^{-1}R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}^{2}+2\,\Phi ^{-2}R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}-1=0}

The solution of this equation is the already mentioned solution:

R [ exp ( 2 π ) ] = tan [ arctan ( 1 3 5 1 3 6 30 + 4 5 3 + 1 3 6 30 4 5 3 ) 1 4 arccot ( 2 ) ] {\displaystyle R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}=\tan {\bigl [}\arctan({\tfrac {1}{3}}{\sqrt {5}}-{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {30}}+4{\sqrt {5}}}}+{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {30}}-4{\sqrt {5}}}}\,)-{\tfrac {1}{4}}\operatorname {arccot}(2){\bigr ]}}

Relation to modular forms

R ( q ) {\displaystyle R(q)} can be related to the Dedekind eta function, a modular form of weight 1/2, as,[1]

1 R ( q ) R ( q ) = η ( τ 5 ) η ( 5 τ ) + 1 {\displaystyle {\frac {1}{R(q)}}-R(q)={\frac {\eta ({\frac {\tau }{5}})}{\eta (5\tau )}}+1}
1 R 5 ( q ) R 5 ( q ) = [ η ( τ ) η ( 5 τ ) ] 6 + 11 {\displaystyle {\frac {1}{R^{5}(q)}}-R^{5}(q)=\left[{\frac {\eta (\tau )}{\eta (5\tau )}}\right]^{6}+11}

The Rogers-Ramanujan continued fraction can also be expressed in terms of the Jacobi theta functions. Recall the notation,

ϑ 10 ( 0 ; τ ) = θ 2 ( q ) = n = q ( n + 1 / 2 ) 2 ϑ 00 ( 0 ; τ ) = θ 3 ( q ) = n = q n 2 ϑ 01 ( 0 ; τ ) = θ 4 ( q ) = n = ( 1 ) n q n 2 {\displaystyle {\begin{aligned}\vartheta _{10}(0;\tau )&=\theta _{2}(q)=\sum _{n=-\infty }^{\infty }q^{(n+1/2)^{2}}\\\vartheta _{00}(0;\tau )&=\theta _{3}(q)=\sum _{n=-\infty }^{\infty }q^{n^{2}}\\\vartheta _{01}(0;\tau )&=\theta _{4}(q)=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{n^{2}}\end{aligned}}}

The notation θ n {\displaystyle \theta _{n}} is slightly easier to remember since θ 2 4 + θ 4 4 = θ 3 4 {\displaystyle \theta _{2}^{4}+\theta _{4}^{4}=\theta _{3}^{4}} , with even subscripts on the LHS. Thus,

R ( x ) = tan { 1 2 arccot [ 1 2 + θ 4 ( x 1 / 5 ) [ 5 θ 4 ( x 5 ) 2 θ 4 ( x ) 2 ] 2 θ 4 ( x 5 ) [ θ 4 ( x ) 2 θ 4 ( x 1 / 5 ) 2 ] ] } {\displaystyle R(x)=\tan {\biggl \{}{\frac {1}{2}}\operatorname {arccot} {\biggl [}{\frac {1}{2}}+{\frac {\theta _{4}(x^{1/5})[5\,\theta _{4}(x^{5})^{2}-\theta _{4}(x)^{2}]}{2\,\theta _{4}(x^{5})[\theta _{4}(x)^{2}-\theta _{4}(x^{1/5})^{2}]}}{\biggr ]}{\biggr \}}}
R ( x ) = tan { 1 2 arccot [ 1 2 + ( θ 2 ( x 1 / 10 ) θ 3 ( x 1 / 10 ) θ 4 ( x 1 / 10 ) 2 3 θ 2 ( x 5 / 2 ) θ 3 ( x 5 / 2 ) θ 4 ( x 5 / 2 ) ) 1 / 3 ] } {\displaystyle R(x)=\tan {\biggl \{}{\frac {1}{2}}\operatorname {arccot} {\biggl [}{\frac {1}{2}}+{\bigg (}{\frac {\theta _{2}(x^{1/10})\,\theta _{3}(x^{1/10})\,\theta _{4}(x^{1/10})}{2^{3}\,\theta _{2}(x^{5/2})\,\theta _{3}(x^{5/2})\,\theta _{4}(x^{5/2})}}{\bigg )}^{1/3}{\biggr ]}{\biggr \}}}
R ( x ) = tan { 1 2 arctan [ 1 2 θ 4 ( x ) 2 2 θ 4 ( x 5 ) 2 ] } 1 / 5 × tan { 1 2 arccot [ 1 2 θ 4 ( x ) 2 2 θ 4 ( x 5 ) 2 ] } 2 / 5 {\displaystyle R(x)=\tan {\biggl \{}{\frac {1}{2}}\arctan {\biggl [}{\frac {1}{2}}-{\frac {\theta _{4}(x)^{2}}{2\,\theta _{4}(x^{5})^{2}}}{\biggr ]}{\biggr \}}^{1/5}\times \tan {\biggl \{}{\frac {1}{2}}\operatorname {arccot} {\biggl [}{\frac {1}{2}}-{\frac {\theta _{4}(x)^{2}}{2\,\theta _{4}(x^{5})^{2}}}{\biggr ]}{\biggr \}}^{2/5}}
R ( x ) = tan { 1 2 arctan [ 1 2 θ 4 ( x 1 / 2 ) 2 2 θ 4 ( x 5 / 2 ) 2 ] } 2 / 5 × cot { 1 2 arccot [ 1 2 θ 4 ( x 1 / 2 ) 2 2 θ 4 ( x 5 / 2 ) 2 ] } 1 / 5 {\displaystyle R(x)=\tan {\biggl \{}{\frac {1}{2}}\arctan {\biggl [}{\frac {1}{2}}-{\frac {\theta _{4}(x^{1/2})^{2}}{2\,\theta _{4}(x^{5/2})^{2}}}{\biggr ]}{\biggr \}}^{2/5}\times \cot {\biggl \{}{\frac {1}{2}}\operatorname {arccot} {\biggl [}{\frac {1}{2}}-{\frac {\theta _{4}(x^{1/2})^{2}}{2\,\theta _{4}(x^{5/2})^{2}}}{\biggr ]}{\biggr \}}^{1/5}}

Note, however, that theta functions normally use the nome q = eiπτ, while the Dedekind eta function uses the square of the nome q = e2iπτ, thus the variable x has been employed instead to maintain consistency between all functions. For example, let τ = 1 {\displaystyle \tau ={\sqrt {-1}}} so x = e π {\displaystyle x=e^{-\pi }} . Plugging this into the theta functions, one gets the same value for all three R(x) formulas which is the correct evaluation of the continued fraction given previously,

R ( e π ) = 1 2 φ ( 5 φ 3 / 2 ) ( 5 4 + φ 3 / 2 ) = 0.511428 {\displaystyle R{\big (}e^{-\pi }{\big )}={\frac {1}{2}}\varphi \,({\sqrt {5}}-\varphi ^{3/2})({\sqrt[{4}]{5}}+\varphi ^{3/2})=0.511428\dots }

One can also define the elliptic nome,

q ( k ) = exp [ π K ( 1 k 2 ) / K ( k ) ] {\displaystyle q(k)=\exp {\big [}-\pi K({\sqrt {1-k^{2}}})/K(k){\big ]}}

The small letter k describes the elliptic modulus and the big letter K describes the complete elliptic integral of the first kind. The continued fraction can then be also expressed by the Jacobi elliptic functions as follows:

R ( q ( k ) ) = tan { 1 2 arctan y } 1 / 5 tan { 1 2 arccot y } 2 / 5 = { y 2 + 1 1 y } 1 / 5 { y [ 1 y 2 + 1 1 ] } 2 / 5 {\displaystyle R{\big (}q(k){\big )}=\tan {\biggl \{}{\frac {1}{2}}\arctan y{\biggr \}}^{1/5}\tan {\biggl \{}{\frac {1}{2}}\operatorname {arccot} y{\biggr \}}^{2/5}=\left\{{\frac {{\sqrt {y^{2}+1}}-1}{y}}\right\}^{1/5}\left\{y\left[{\sqrt {{\frac {1}{y^{2}}}+1}}-1\right]\right\}^{2/5}}

with

y = 2 k 2 sn [ 2 5 K ( k ) ; k ] 2 sn [ 4 5 K ( k ) ; k ] 2 5 k 2 sn [ 2 5 K ( k ) ; k ] 2 sn [ 4 5 K ( k ) ; k ] 2 . {\displaystyle y={\frac {2k^{2}\,{\text{sn}}[{\tfrac {2}{5}}K(k);k]^{2}\,{\text{sn}}[{\tfrac {4}{5}}K(k);k]^{2}}{5-k^{2}\,{\text{sn}}[{\tfrac {2}{5}}K(k);k]^{2}\,{\text{sn}}[{\tfrac {4}{5}}K(k);k]^{2}}}.}

Relation to j-function

One formula involving the j-function and the Dedekind eta function is this:

j ( τ ) = ( x 2 + 10 x + 5 ) 3 x {\displaystyle j(\tau )={\frac {(x^{2}+10x+5)^{3}}{x}}}

where x = [ 5 η ( 5 τ ) η ( τ ) ] 6 . {\displaystyle x=\left[{\frac {{\sqrt {5}}\,\eta (5\tau )}{\eta (\tau )}}\right]^{6}.\,} Since also,

1 R 5 ( q ) R 5 ( q ) = [ η ( τ ) η ( 5 τ ) ] 6 + 11 {\displaystyle {\frac {1}{R^{5}(q)}}-R^{5}(q)=\left[{\frac {\eta (\tau )}{\eta (5\tau )}}\right]^{6}+11}

Eliminating the eta quotient x {\displaystyle x} between the two equations, one can then express j(τ) in terms of r = R ( q ) {\displaystyle r=R(q)} as,

j ( τ ) = ( r 20 228 r 15 + 494 r 10 + 228 r 5 + 1 ) 3 r 5 ( r 10 + 11 r 5 1 ) 5 j ( τ ) 1728 = ( r 30 + 522 r 25 10005 r 20 10005 r 10 522 r 5 + 1 ) 2 r 5 ( r 10 + 11 r 5 1 ) 5 {\displaystyle {\begin{aligned}&j(\tau )=-{\frac {(r^{20}-228r^{15}+494r^{10}+228r^{5}+1)^{3}}{r^{5}(r^{10}+11r^{5}-1)^{5}}}\\[6pt]&j(\tau )-1728=-{\frac {(r^{30}+522r^{25}-10005r^{20}-10005r^{10}-522r^{5}+1)^{2}}{r^{5}(r^{10}+11r^{5}-1)^{5}}}\end{aligned}}}

where the numerator and denominator are polynomial invariants of the icosahedron. Using the modular equation between R ( q ) {\displaystyle R(q)} and R ( q 5 ) {\displaystyle R(q^{5})} , one finds that,

j ( 5 τ ) = ( r 20 + 12 r 15 + 14 r 10 12 r 5 + 1 ) 3 r 25 ( r 10 + 11 r 5 1 ) j ( 5 τ ) 1728 = ( r 30 + 18 r 25 + 75 r 20 + 75 r 10 18 r 5 + 1 ) 2 r 25 ( r 10 + 11 r 5 1 ) {\displaystyle {\begin{aligned}&j(5\tau )=-{\frac {(r^{20}+12r^{15}+14r^{10}-12r^{5}+1)^{3}}{r^{25}(r^{10}+11r^{5}-1)}}\\[6pt]&j(5\tau )-1728=-{\frac {(r^{30}+18r^{25}+75r^{20}+75r^{10}-18r^{5}+1)^{2}}{r^{25}(r^{10}+11r^{5}-1)}}\end{aligned}}}

Let z = r 5 1 r 5 {\displaystyle z=r^{5}-{\frac {1}{r^{5}}}} , then j ( 5 τ ) = ( z 2 + 12 z + 16 ) 3 z + 11 {\displaystyle j(5\tau )=-{\frac {\left(z^{2}+12z+16\right)^{3}}{z+11}}}

where

z = [ 5 η ( 25 τ ) η ( 5 τ ) ] 6 11 ,   z 0 = [ η ( τ ) η ( 5 τ ) ] 6 11 ,   z 1 = [ η ( 5 τ + 2 5 ) η ( 5 τ ) ] 6 11 , z 2 = [ η ( 5 τ + 4 5 ) η ( 5 τ ) ] 6 11 ,   z 3 = [ η ( 5 τ + 6 5 ) η ( 5 τ ) ] 6 11 ,   z 4 = [ η ( 5 τ + 8 5 ) η ( 5 τ ) ] 6 11 {\displaystyle {\begin{aligned}&z_{\infty }=-\left[{\frac {{\sqrt {5}}\,\eta (25\tau )}{\eta (5\tau )}}\right]^{6}-11,\ z_{0}=-\left[{\frac {\eta (\tau )}{\eta (5\tau )}}\right]^{6}-11,\ z_{1}=\left[{\frac {\eta ({\frac {5\tau +2}{5}})}{\eta (5\tau )}}\right]^{6}-11,\\[6pt]&z_{2}=-\left[{\frac {\eta ({\frac {5\tau +4}{5}})}{\eta (5\tau )}}\right]^{6}-11,\ z_{3}=\left[{\frac {\eta ({\frac {5\tau +6}{5}})}{\eta (5\tau )}}\right]^{6}-11,\ z_{4}=-\left[{\frac {\eta ({\frac {5\tau +8}{5}})}{\eta (5\tau )}}\right]^{6}-11\end{aligned}}}

which in fact is the j-invariant of the elliptic curve,

y 2 + ( 1 + r 5 ) x y + r 5 y = x 3 + r 5 x 2 {\displaystyle y^{2}+(1+r^{5})xy+r^{5}y=x^{3}+r^{5}x^{2}}

parameterized by the non-cusp points of the modular curve X 1 ( 5 ) {\displaystyle X_{1}(5)} .

Functional equation

For convenience, one can also use the notation r ( τ ) = R ( q ) {\displaystyle r(\tau )=R(q)} when q = e2πiτ. While other modular functions like the j-invariant satisfies,

j ( 1 τ ) = j ( τ ) {\displaystyle j(-{\tfrac {1}{\tau }})=j(\tau )}

and the Dedekind eta function has,

η ( 1 τ ) = i τ η ( τ ) {\displaystyle \eta (-{\tfrac {1}{\tau }})={\sqrt {-i\tau }}\,\eta (\tau )}

the functional equation of the Rogers–Ramanujan continued fraction involves[2] the golden ratio φ {\displaystyle \varphi } ,

r ( 1 τ ) = 1 φ r ( τ ) φ + r ( τ ) {\displaystyle r(-{\tfrac {1}{\tau }})={\frac {1-\varphi \,r(\tau )}{\varphi +r(\tau )}}}

Incidentally,

r ( 7 + i 10 ) = i {\displaystyle r({\tfrac {7+i}{10}})=i}

Modular equations

There are modular equations between R ( q ) {\displaystyle R(q)} and R ( q n ) {\displaystyle R(q^{n})} . Elegant ones for small prime n are as follows.[3]

For n = 2 {\displaystyle n=2} , let u = R ( q ) {\displaystyle u=R(q)} and v = R ( q 2 ) {\displaystyle v=R(q^{2})} , then v u 2 = ( v + u 2 ) u v 2 . {\displaystyle v-u^{2}=(v+u^{2})uv^{2}.}


For n = 3 {\displaystyle n=3} , let u = R ( q ) {\displaystyle u=R(q)} and v = R ( q 3 ) {\displaystyle v=R(q^{3})} , then ( v u 3 ) ( 1 + u v 3 ) = 3 u 2 v 2 . {\displaystyle (v-u^{3})(1+uv^{3})=3u^{2}v^{2}.}


For n = 5 {\displaystyle n=5} , let u = R ( q ) {\displaystyle u=R(q)} and v = R ( q 5 ) {\displaystyle v=R(q^{5})} , then v ( v 4 3 v 3 + 4 v 2 2 v + 1 ) = ( v 4 + 2 v 3 + 4 v 2 + 3 v + 1 ) u 5 . {\displaystyle v(v^{4}-3v^{3}+4v^{2}-2v+1)=(v^{4}+2v^{3}+4v^{2}+3v+1)u^{5}.}


Or equivalently for n = 5 {\displaystyle n=5} , let u = R ( q ) {\displaystyle u=R(q)} and v = R ( q 5 ) {\displaystyle v=R(q^{5})} and φ = 1 + 5 2 {\displaystyle \varphi ={\tfrac {1+{\sqrt {5}}}{2}}} , then u 5 = v ( v 2 φ 2 v + φ 2 ) ( v 2 φ 2 v + φ 2 ) ( v 2 + v + φ 2 ) ( v 2 + v + φ 2 ) . {\displaystyle u^{5}={\frac {v\,(v^{2}-\varphi ^{2}v+\varphi ^{2})(v^{2}-\varphi ^{-2}v+\varphi ^{-2})}{(v^{2}+v+\varphi ^{2})(v^{2}+v+\varphi ^{-2})}}.}


For n = 11 {\displaystyle n=11} , let u = R ( q ) {\displaystyle u=R(q)} and v = R ( q 11 ) {\displaystyle v=R(q^{11})} , then u v ( u 10 + 11 u 5 1 ) ( v 10 + 11 v 5 1 ) = ( u v ) 12 . {\displaystyle uv(u^{10}+11u^{5}-1)(v^{10}+11v^{5}-1)=(u-v)^{12}.}


Regarding n = 5 {\displaystyle n=5} , note that v 10 + 11 v 5 1 = ( v 2 + v 1 ) ( v 4 3 v 3 + 4 v 2 2 v + 1 ) ( v 4 + 2 v 3 + 4 v 2 + 3 v + 1 ) . {\displaystyle v^{10}+11v^{5}-1=(v^{2}+v-1)(v^{4}-3v^{3}+4v^{2}-2v+1)(v^{4}+2v^{3}+4v^{2}+3v+1).}

Other results

Ramanujan found many other interesting results regarding R ( q ) {\displaystyle R(q)} .[4] Let a , b R + {\displaystyle a,b\in \mathbb {R} ^{+}} , and φ {\displaystyle \varphi } as the golden ratio.

If a b = π 2 {\displaystyle ab=\pi ^{2}} then,

[ R ( e 2 a ) + φ ] [ R ( e 2 b ) + φ ] = 5 φ . {\displaystyle {\bigl [}R(e^{-2a})+\varphi {\bigl ]}{\bigl [}R(e^{-2b})+\varphi {\bigr ]}={\sqrt {5}}\,\varphi .}

If 5 a b = π 2 {\displaystyle 5ab=\pi ^{2}} then,

[ R 5 ( e 2 a ) + φ 5 ] [ R 5 ( e 2 b ) + φ 5 ] = 5 5 φ 5 . {\displaystyle {\bigl [}R^{5}(e^{-2a})+\varphi ^{5}{\bigl ]}{\bigl [}R^{5}(e^{-2b})+\varphi ^{5}{\bigr ]}=5{\sqrt {5}}\,\varphi ^{5}.}

The powers of R ( q ) {\displaystyle R(q)} also can be expressed in unusual ways. For its cube,

R 3 ( q ) = α β {\displaystyle R^{3}(q)={\frac {\alpha }{\beta }}}

where

α = n = 0 q 2 n 1 q 5 n + 2 n = 0 q 3 n + 1 1 q 5 n + 3 , {\displaystyle \alpha =\sum _{n=0}^{\infty }{\frac {q^{2n}}{1-q^{5n+2}}}-\sum _{n=0}^{\infty }{\frac {q^{3n+1}}{1-q^{5n+3}}},}
β = n = 0 q n 1 q 5 n + 1 n = 0 q 4 n + 3 1 q 5 n + 4 . {\displaystyle \beta =\sum _{n=0}^{\infty }{\frac {q^{n}}{1-q^{5n+1}}}-\sum _{n=0}^{\infty }{\frac {q^{4n+3}}{1-q^{5n+4}}}.}

For its fifth power, let w = R ( q ) R 2 ( q 2 ) {\displaystyle w=R(q)R^{2}(q^{2})} , then,

R 5 ( q ) = w ( 1 w 1 + w ) 2 , R 5 ( q 2 ) = w 2 ( 1 + w 1 w ) {\displaystyle R^{5}(q)=w\left({\frac {1-w}{1+w}}\right)^{2},\;\;R^{5}(q^{2})=w^{2}\left({\frac {1+w}{1-w}}\right)}

Quintic equations

The general quintic equation in Bring-Jerrard form:

x 5 5 x 4 a = 0 {\displaystyle x^{5}-5x-4a=0}

for every real value a > 1 {\displaystyle a>1} can be solved in terms of Rogers-Ramanujan continued fraction R ( q ) {\displaystyle R(q)} and the elliptic nome

q ( k ) = exp [ π K ( 1 k 2 ) / K ( k ) ] . {\displaystyle q(k)=\exp {\big [}-\pi K({\sqrt {1-k^{2}}})/K(k){\big ]}.}

To solve this quintic, the elliptic modulus must first be determined as

k = tan [ 1 4 π 1 4 arccsc ( a 2 ) ] . {\displaystyle k=\tan[{\tfrac {1}{4}}\pi -{\tfrac {1}{4}}\operatorname {arccsc}(a^{2})].}

Then the real solution is

x = 2 { 1 R [ q ( k ) ] } { 1 + R [ q ( k ) 2 ] } R [ q ( k ) ] R [ q ( k ) 2 ] 4 cot 4 arctan { S } 3 4 = 2 { 1 R [ q ( k ) ] } { 1 + R [ q ( k ) 2 ] } R [ q ( k ) ] R [ q ( k ) 2 ] 2 S 1 + 2 S + 1 + 1 S S 3 4 . {\displaystyle {\begin{aligned}x&={\frac {2-{\bigl \{}1-R[q(k)]{\bigr \}}{\bigl \{}1+R[q(k)^{2}]{\bigr \}}}{{\sqrt {R[q(k)]\,R[q(k)^{2}]}}\,{\sqrt[{4}]{4\cot \langle 4\arctan\{S\}\rangle -3}}}}\\&={\frac {2-{\bigl \{}1-R[q(k)]{\bigr \}}{\bigl \{}1+R[q(k)^{2}]{\bigr \}}}{{\sqrt {R[q(k)]R[q(k)^{2}]}}\,{\sqrt[{4}]{{\frac {2}{S-1}}+{\frac {2}{S+1}}+{\frac {1}{S}}-S-3}}}}.\end{aligned}}}

where S = R [ q ( k ) ] R 2 [ q ( k ) 2 ] . {\displaystyle S=R[q(k)]\,R^{2}[q(k)^{2}].} . Recall in the previous section the 5th power of R ( q ) {\displaystyle R(q)} can be expressed by S {\displaystyle S} :

R 5 [ q ( k ) ] = S ( 1 S 1 + S ) 2 {\displaystyle R^{5}[q(k)]=S\left({\frac {1-S}{1+S}}\right)^{2}}

Example 1

x 5 x 1 = 0 {\displaystyle x^{5}-x-1=0}

Transform to,

( 5 4 x ) 5 5 ( 5 4 x ) 4 ( 5 4 5 4 ) = 0 {\displaystyle ({\sqrt[{4}]{5}}x)^{5}-5({\sqrt[{4}]{5}}x)-4({\tfrac {5}{4}}{\sqrt[{4}]{5}})=0}

thus,

a = 5 4 5 4 {\displaystyle a={\tfrac {5}{4}}{\sqrt[{4}]{5}}}
k = tan [ 1 4 π 1 4 arccsc ( a 2 ) ] = 5 5 / 4 + 25 5 16 5 5 / 4 + 25 5 + 16 {\displaystyle k=\tan[{\tfrac {1}{4}}\pi -{\tfrac {1}{4}}\operatorname {arccsc}(a^{2})]={\tfrac {5^{5/4}+{\sqrt {25{\sqrt {5}}-16}}}{5^{5/4}+{\sqrt {25{\sqrt {5}}+16}}}}}
q ( k ) = 0.0851414716 {\displaystyle q(k)=0.0851414716\dots }
R [ q ( k ) ] = 0.5633613184 {\displaystyle R[q(k)]=0.5633613184\dots }
R [ q ( k ) 2 ] = 0.3706122329 {\displaystyle R[q(k)^{2}]=0.3706122329\dots }

and the solution is:

x = 2 { 1 R [ q ( k ) ] } { 1 + R [ q ( k ) 2 ] } R [ q ( k ) ] R [ q ( k ) 2 ] 20 cot 4 arctan { R [ q ( k ) ] R [ q ( k ) 2 ] 2 } 15 4 = 1.167303978 {\displaystyle x={\frac {2-{\bigl \{}1-R[q(k)]{\bigr \}}{\bigl \{}1+R[q(k)^{2}]{\bigr \}}}{{\sqrt {R[q(k)]\,R[q(k)^{2}]}}\,{\sqrt[{4}]{20\cot \langle 4\arctan\{R[q(k)]\,R[q(k)^{2}]^{2}\}\rangle -15}}}}=1.167303978\dots }

and can not be represented by elementary root expressions.

Example 2

x 5 5 x 4 ( 81 32 4 ) = 0 {\displaystyle x^{5}-5x-4{\Bigl (}{\sqrt[{4}]{\tfrac {81}{32}}}{\Bigr )}=0}

thus,

a = 81 32 4 {\displaystyle a={\sqrt[{4}]{\tfrac {81}{32}}}}

Given the more familiar continued fractions with closed-forms,

r 1 = R ( e π ) = 1 2 φ ( 5 φ 3 / 2 ) ( 5 4 + φ 3 / 2 ) = 0.511428 {\displaystyle r_{1}=R{\big (}e^{-\pi }{\big )}={\tfrac {1}{2}}\varphi \,({\sqrt {5}}-\varphi ^{3/2})({\sqrt[{4}]{5}}+\varphi ^{3/2})=0.511428\dots }
r 2 = R ( e 2 π ) = 5 4 φ 1 / 2 φ = 0.284079 {\displaystyle r_{2}=R{\big (}e^{-2\pi }{\big )}={\sqrt[{4}]{5}}\,\varphi ^{1/2}-\varphi =0.284079\dots }
r 4 = R ( e 4 π ) = 1 2 φ ( 5 φ 3 / 2 ) ( 5 4 + φ 3 / 2 ) = 0.081002 {\displaystyle r_{4}=R{\big (}e^{-4\pi }{\big )}={\tfrac {1}{2}}\varphi \,({\sqrt {5}}-\varphi ^{3/2})(-{\sqrt[{4}]{5}}+\varphi ^{3/2})=0.081002\dots }

with golden ratio φ = 1 + 5 2 {\displaystyle \varphi ={\tfrac {1+{\sqrt {5}}}{2}}} and the solution simplifies to

x = 5 4 2 { 1 r 1 } { 1 + r 2 } r 1 r 2 20 cot 4 arctan { r 1 r 2 2 } 15 4 = 5 4 2 { 1 r 2 } { 1 + r 4 } r 2 r 4 20 cot 4 arctan { r 2 r 4 2 } 15 4 = 8 4 = 1.681792 {\displaystyle {\begin{aligned}x&={\sqrt[{4}]{5}}\,{\frac {2-{\bigl \{}1-r_{1}{\bigr \}}{\bigl \{}1+r_{2}{\bigr \}}}{{\sqrt {r_{1}\,r_{2}}}\,{\sqrt[{4}]{20\cot \langle 4\arctan\{r_{1}\,r_{2}^{2}\}\rangle -15}}}}\\[6pt]&={\sqrt[{4}]{5}}\,{\frac {2-{\bigl \{}1-r_{2}{\bigr \}}{\bigl \{}1+r_{4}{\bigr \}}}{{\sqrt {r_{2}\,r_{4}}}\,{\sqrt[{4}]{20\cot \langle 4\arctan\{r_{2}\,r_{4}^{2}\}\rangle -15}}}}\\[6pt]&={\sqrt[{4}]{8}}=1.681792\dots \end{aligned}}}

References

  1. ^ Duke, W. "Continued Fractions and Modular Functions", https://www.math.ucla.edu/~wdduke/preprints/bams4.pdf
  2. ^ Duke, W. "Continued Fractions and Modular Functions" (p.9)
  3. ^ Berndt, B. et al. "The Rogers–Ramanujan Continued Fraction", http://www.math.uiuc.edu/~berndt/articles/rrcf.pdf
  4. ^ Berndt, B. et al. "The Rogers–Ramanujan Continued Fraction"
  • Rogers, L. J. (1894), "Second Memoir on the Expansion of certain Infinite Products", Proc. London Math. Soc., s1-25 (1): 318–343, doi:10.1112/plms/s1-25.1.318
  • Berndt, B. C.; Chan, H. H.; Huang, S. S.; Kang, S. Y.; Sohn, J.; Son, S. H. (1999), "The Rogers–Ramanujan continued fraction" (PDF), Journal of Computational and Applied Mathematics, 105 (1–2): 9–24, doi:10.1016/S0377-0427(99)00033-3