RC3H1

Protein-coding gene in the species Homo sapiens
RC3H1
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

3X1O, 4QIK, 4QIL, 4ULW, 4YWQ

Identifiers
AliasesRC3H1, RNF198, ROQUIN, ring finger and CCCH-type domains 1, FHL6, IMDSHY
External IDsOMIM: 609424; MGI: 2685397; HomoloGene: 19036; GeneCards: RC3H1; OMA:RC3H1 - orthologs
Gene location (Human)
Chromosome 1 (human)
Chr.Chromosome 1 (human)[1]
Chromosome 1 (human)
Genomic location for RC3H1
Genomic location for RC3H1
Band1q25.1Start173,931,084 bp[1]
End174,022,357 bp[1]
Gene location (Mouse)
Chromosome 1 (mouse)
Chr.Chromosome 1 (mouse)[2]
Chromosome 1 (mouse)
Genomic location for RC3H1
Genomic location for RC3H1
Band1|1 H2.1Start160,733,988 bp[2]
End160,802,548 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • tibialis anterior muscle

  • skin of thigh

  • mucosa of ileum

  • deltoid muscle

  • buccal mucosa cell

  • skin of hip

  • skin of arm

  • pancreatic epithelial cell

  • cardiac muscle tissue of right atrium

  • trabecular bone
Top expressed in
  • hand

  • aortic valve

  • ascending aorta

  • otolith organ

  • utricle

  • fossa

  • condyle

  • facial motor nucleus

  • Paneth cell

  • conjunctival fornix
More reference expression data
BioGPS
n/a
Gene ontology
Molecular function
  • ubiquitin protein ligase activity
  • metal ion binding
  • mRNA binding
  • RNA stem-loop binding
  • mRNA 3'-UTR binding
  • RNA binding
  • double-stranded RNA binding
  • ubiquitin-protein transferase activity
  • protein binding
  • zinc ion binding
  • transferase activity
  • miRNA binding
Cellular component
  • cytoplasm
  • P-body
  • cytoplasmic stress granule
Biological process
  • regulation of T cell proliferation
  • regulation of T cell activation
  • B cell homeostasis
  • spleen development
  • positive regulation of NIK/NF-kappaB signaling
  • T cell homeostasis
  • T cell proliferation
  • regulation of gene expression
  • lymph node development
  • T follicular helper cell differentiation
  • negative regulation of T-helper cell differentiation
  • regulation of mRNA stability
  • positive regulation of mRNA catabolic process
  • regulation of germinal center formation
  • posttranscriptional regulation of gene expression
  • negative regulation of germinal center formation
  • negative regulation of B cell proliferation
  • cellular response to interleukin-1
  • protein ubiquitination
  • nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay
  • P-body assembly
  • regulation of T cell receptor signaling pathway
  • nuclear-transcribed mRNA catabolic process
  • negative regulation of activated T cell proliferation
  • 3'-UTR-mediated mRNA destabilization
  • protein polyubiquitination
  • T cell receptor signaling pathway
  • negative regulation of T-helper 17 cell differentiation
  • regulation of miRNA metabolic process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

149041

381305

Ensembl

ENSG00000135870

ENSMUSG00000040423

UniProt

Q5TC82

Q4VGL6

RefSeq (mRNA)

NM_001300850
NM_001300851
NM_001300852
NM_172071

NM_001024952

RefSeq (protein)

NP_001287779
NP_001287780
NP_001287781
NP_742068
NP_001287779.1

NP_001020123

Location (UCSC)Chr 1: 173.93 – 174.02 MbChr 1: 160.73 – 160.8 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Ring finger and CCCH-type domains 1, also known as Roquin-1, is a protein that in humans is encoded by the RC3H1 gene.[5]

Function

The consensus primary sequence and secondary structure for the Roquin-1 (RC3H1) binding site (also called constitutive decay element (CDE)).

This gene encodes a protein containing RING-type and C3H1-type zinc finger motifs. The encoded protein recognizes and binds to a constitutive decay element (CDE) in the 3' UTR of mRNAs, leading to mRNA deadenylation and degradation. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2014].

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000135870 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000040423 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: Ring finger and CCCH-type domains 1".

Further reading

  • Bertossi A, Aichinger M, Sansonetti P, Lech M, Neff F, Pal M, Wunderlich FT, Anders HJ, Klein L, Schmidt-Supprian M (August 2011). "Loss of Roquin induces early death and immune deregulation but not autoimmunity". The Journal of Experimental Medicine. 208 (9): 1749–56. doi:10.1084/jem.20110578. PMC 3171092. PMID 21844204.
  • Leppek K, Schott J, Reitter S, Poetz F, Hammond MC, Stoecklin G (May 2013). "Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs". Cell. 153 (4): 869–81. doi:10.1016/j.cell.2013.04.016. PMID 23663784.
  • Heissmeyer V, Vogel KU (May 2013). "Molecular control of Tfh-cell differentiation by Roquin family proteins". Immunological Reviews. 253 (1): 273–89. doi:10.1111/imr.12056. PMID 23550652. S2CID 22131153.
  • Chang PP, Lee SK, Hu X, Davey G, Duan G, Cho JH, Karupiah G, Sprent J, Heath WR, Bertram EM, Vinuesa CG (July 2012). "Breakdown in repression of IFN-γ mRNA leads to accumulation of self-reactive effector CD8+ T cells". Journal of Immunology. 189 (2): 701–10. doi:10.4049/jimmunol.1102432. PMID 22685317.
  • Athanasopoulos V, Barker A, Yu D, Tan AH, Srivastava M, Contreras N, Wang J, Lam KP, Brown SH, Goodnow CC, Dixon NE, Leedman PJ, Saint R, Vinuesa CG (May 2010). "The ROQUIN family of proteins localizes to stress granules via the ROQ domain and binds target mRNAs". The FEBS Journal. 277 (9): 2109–27. doi:10.1111/j.1742-4658.2010.07628.x. PMID 20412057.
  • Yu D, Tan AH, Hu X, Athanasopoulos V, Simpson N, Silva DG, Hutloff A, Giles KM, Leedman PJ, Lam KP, Goodnow CC, Vinuesa CG (November 2007). "Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA". Nature. 450 (7167): 299–303. Bibcode:2007Natur.450..299D. doi:10.1038/nature06253. PMID 18172933. S2CID 4398665.
  • Pratama A, Ramiscal RR, Silva DG, Das SK, Athanasopoulos V, Fitch J, Botelho NK, Chang PP, Hu X, Hogan JJ, Maña P, Bernal D, Korner H, Yu D, Goodnow CC, Cook MC, Vinuesa CG (April 2013). "Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation". Immunity. 38 (4): 669–80. doi:10.1016/j.immuni.2013.01.011. PMID 23583642.
  • Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM, Yu D, Domaschenz H, Whittle B, Lambe T, Roberts IS, Copley RR, Bell JI, Cornall RJ, Goodnow CC (May 2005). "A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity". Nature. 435 (7041): 452–8. Bibcode:2005Natur.435..452V. doi:10.1038/nature03555. PMID 15917799. S2CID 4413889.
  • Linterman MA, Rigby RJ, Wong R, Silva D, Withers D, Anderson G, Verma NK, Brink R, Hutloff A, Goodnow CC, Vinuesa CG (February 2009). "Roquin differentiates the specialized functions of duplicated T cell costimulatory receptor genes CD28 and ICOS". Immunity. 30 (2): 228–41. doi:10.1016/j.immuni.2008.12.015. PMID 19217324.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


  • v
  • t
  • e