Armonice solide

În fizică și matematică, armonicele solide sunt soluții ale ecuației lui Laplace în coordonate sferice. Există două feluri de armonice solide:

  • armonice solide regulate R m ( r ) {\displaystyle R_{\ell }^{m}(\mathbf {r} )} , care tind către zero în origine
  • armonice solide neregulate, care sunt singulare în origine.

Ambele seturi de funcții joacă un rol esențial în teoria potențialului, obținute prin rescalarea corespunzătoare a armonicelor sferice.

R m ( r ) = r Y m ( θ , ϕ ) . {\displaystyle R_{\ell }^{m}(\mathbf {r} )=r^{\ell }Y_{\ell }^{m}(\theta ,\phi ).}

Derivări, legătura cu armonicele sferice

Introducând r, θ și φ pentru coordonatele sferice ale unui vector tridimensional r, putem scrie ecuația lui Laplace sub forma următoare:

2 Φ ( r ) = ( 1 r 2 r 2 r L 2 2 r 2 ) Φ ( r ) = 0 , r 0 , {\displaystyle \nabla ^{2}\Phi (\mathbf {r} )=\left({\frac {1}{r}}{\frac {\partial ^{2}}{\partial r^{2}}}r-{\frac {L^{2}}{\hbar ^{2}r^{2}}}\right)\Phi (\mathbf {r} )=0,\qquad \mathbf {r} \neq \mathbf {0} ,}

în care L2 este pătratul operatorului momentului unghiular:

L = i ( r × ) . {\displaystyle \mathbf {L} =-i\hbar \,(\mathbf {r} \times \mathbf {\nabla } ).}

Se cunoaște că armonicele sferice Yml sunt funcții proprii ale lui L2:

L 2 Y m [ L x 2 + L y 2 + L z 2 ] Y m = ( + 1 ) Y m . {\displaystyle L^{2}Y_{\ell }^{m}\equiv \left[L_{x}^{2}+L_{y}^{2}+L_{z}^{2}\right]Y_{\ell }^{m}=\ell (\ell +1)Y_{\ell }^{m}.}

Substituind Φ(r) = F(r) Yml în ecuația lui Laplace, obținem următoarea ecuație radială și soluția ei generală:

1 r 2 r 2 r F ( r ) = ( + 1 ) r 2 F ( r ) F ( r ) = A r + B r 1 . {\displaystyle {\frac {1}{r}}{\frac {\partial ^{2}}{\partial r^{2}}}rF(r)={\frac {\ell (\ell +1)}{r^{2}}}F(r)\Longrightarrow F(r)=Ar^{\ell }+Br^{-\ell -1}.}

Soluțiile particulare ale ecuației Laplace sunt armonice solide regulate:

R m ( r ) 4 π 2 + 1 r Y m ( θ , φ ) , {\displaystyle R_{\ell }^{m}(\mathbf {r} )\equiv {\sqrt {\frac {4\pi }{2\ell +1}}}\;r^{\ell }Y_{\ell }^{m}(\theta ,\varphi ),}

și armonice solide neregulate:

I m ( r ) 4 π 2 + 1 Y m ( θ , φ ) r + 1 . {\displaystyle I_{\ell }^{m}(\mathbf {r} )\equiv {\sqrt {\frac {4\pi }{2\ell +1}}}\;{\frac {Y_{\ell }^{m}(\theta ,\varphi )}{r^{\ell +1}}}.}

Normalizarea lui Racah (cunoscută și ca seminormalizarea lui Schmidt) se aplică ambelor funcții:

0 π sin θ d θ 0 2 π d φ R m ( r ) R m ( r ) = 4 π 2 + 1 r 2 {\displaystyle \int _{0}^{\pi }\sin \theta \,d\theta \int _{0}^{2\pi }d\varphi \;R_{\ell }^{m}(\mathbf {r} )^{*}\;R_{\ell }^{m}(\mathbf {r} )={\frac {4\pi }{2\ell +1}}r^{2\ell }}

(și analog pentru armonicele solide neregulate). Se preferă această normalizare Racah deoarece în multe aplicații factorul normalizării apare neschimbat în toate derivările.

Teoremele de sumare

Translația armonicelor solide regulate conduce la o dezvoltare finită:

R m ( r + a ) = λ = 0 ( 2 2 λ ) 1 / 2 μ = λ λ R λ μ ( r ) R λ m μ ( a ) λ , μ ; λ , m μ | m , {\displaystyle R_{\ell }^{m}(\mathbf {r} +\mathbf {a} )=\sum _{\lambda =0}^{\ell }{\binom {2\ell }{2\lambda }}^{1/2}\sum _{\mu =-\lambda }^{\lambda }R_{\lambda }^{\mu }(\mathbf {r} )R_{\ell -\lambda }^{m-\mu }(\mathbf {a} )\;\langle \lambda ,\mu ;\ell -\lambda ,m-\mu |\ell m\rangle ,}

în care coeficientul Clebsch-Gordan este dat de:

λ , μ ; λ , m μ | m = ( + m λ + μ ) 1 / 2 ( m λ μ ) 1 / 2 ( 2 2 λ ) 1 / 2 . {\displaystyle \langle \lambda ,\mu ;\ell -\lambda ,m-\mu |\ell m\rangle ={\binom {\ell +m}{\lambda +\mu }}^{1/2}{\binom {\ell -m}{\lambda -\mu }}^{1/2}{\binom {2\ell }{2\lambda }}^{-1/2}.}

Dezvoltarea similară pentru armonicele solide neregulate conduce la o serie infinită:

I m ( r + a ) = λ = 0 ( 2 + 2 λ + 1 2 λ ) 1 / 2 μ = λ λ R λ μ ( r ) I + λ m μ ( a ) λ , μ ; + λ , m μ | m {\displaystyle I_{\ell }^{m}(\mathbf {r} +\mathbf {a} )=\sum _{\lambda =0}^{\infty }{\binom {2\ell +2\lambda +1}{2\lambda }}^{1/2}\sum _{\mu =-\lambda }^{\lambda }R_{\lambda }^{\mu }(\mathbf {r} )I_{\ell +\lambda }^{m-\mu }(\mathbf {a} )\;\langle \lambda ,\mu ;\ell +\lambda ,m-\mu |\ell m\rangle }

cu | r | | a | {\displaystyle |r|\leq |a|\,} . Cantitatea dintre paranteze este tot coeficientul Clebsch-Gordan:

λ , μ ; + λ , m μ | m = ( 1 ) λ + μ ( + λ m + μ λ + μ ) 1 / 2 ( + λ + m μ λ μ ) 1 / 2 ( 2 + 2 λ + 1 2 λ ) 1 / 2 . {\displaystyle \langle \lambda ,\mu ;\ell +\lambda ,m-\mu |\ell m\rangle =(-1)^{\lambda +\mu }{\binom {\ell +\lambda -m+\mu }{\lambda +\mu }}^{1/2}{\binom {\ell +\lambda +m-\mu }{\lambda -\mu }}^{1/2}{\binom {2\ell +2\lambda +1}{2\lambda }}^{-1/2}.}

Referințe

Teorema de sumare a fost demonstrată în multe feluri de diverși autori. Vezi cele două exemple diferite de demonstrare:

  • R. J. A. Tough and A. J. Stone, J. Phys. A: Math. Gen. Vol. 10, p. 1261 (1977)
  • M. J. Caola, J. Phys. A: Math. Gen. Vol. 11, p. L23 (1978)

Forma reală

Printr-o simplă combinație liniară de armonice solide de ±m aceste funcții sunt transformate în funcții reale. Armonicele solide regulate reale, exprimate în coordonate carteziene, sunt polinoame omogene de ordinul l în x, y și z. Forma explicită a acestor polinoame are o anumită importanță. De exemplu, ele apar sub forma orbitei atomice sferice și a momentelor multipolare reale. Expresii carteziene explicite vor fi date pentru armonicele regulate reale.

Combinații liniare

Scriem în acord cu definiția de mai sus:

R m ( r , θ , φ ) = ( 1 ) ( m + | m | ) / 2 r Θ | m | ( cos θ ) e i m φ , m , {\displaystyle R_{\ell }^{m}(r,\theta ,\varphi )=(-1)^{(m+|m|)/2}\;r^{\ell }\;\Theta _{\ell }^{|m|}(\cos \theta )e^{im\varphi },\qquad -\ell \leq m\leq \ell ,}

cu

Θ m ( cos θ ) [ ( m ) ! ( + m ) ! ] 1 / 2 sin m θ d m P ( cos θ ) d cos m θ , m 0 , {\displaystyle \Theta _{\ell }^{m}(\cos \theta )\equiv \left[{\frac {(\ell -m)!}{(\ell +m)!}}\right]^{1/2}\,\sin ^{m}\theta \,{\frac {d^{m}P_{\ell }(\cos \theta )}{d\cos ^{m}\theta }},\qquad m\geq 0,}

în care P ( cos θ ) {\displaystyle P_{\ell }(\cos \theta )} este un polinom Legendre de ordin l. Faza dependentă m este cunoscută drept faza Condon–Shortley

Următoarea expresie definește armonicele solide regulate reale:

( C m S m ) 2 r Θ m ( cos m φ sin m φ ) = 1 2 ( ( 1 ) m 1 ( 1 ) m i i ) ( R m R m ) , m > 0. {\displaystyle {\begin{pmatrix}C_{\ell }^{m}\\S_{\ell }^{m}\end{pmatrix}}\equiv {\sqrt {2}}\;r^{\ell }\;\Theta _{\ell }^{m}{\begin{pmatrix}\cos m\varphi \\\sin m\varphi \end{pmatrix}}={\frac {1}{\sqrt {2}}}{\begin{pmatrix}(-1)^{m}&\quad 1\\-(-1)^{m}i&\quad i\end{pmatrix}}{\begin{pmatrix}R_{\ell }^{m}\\R_{\ell }^{-m}\end{pmatrix}},\qquad m>0.}

iar pentru m = 0:

C 0 R 0 . {\displaystyle C_{\ell }^{0}\equiv R_{\ell }^{0}.}

Deoarece transformarea se face prin intermediul matricii unitate, normalizarea armonicelor solide reale sau complexe este aceeași.

Parte z-dependentă

Dacă scriem u = cos θ, derivata m a polinoamelor Legendre poate fi scrisă prin următoare dezvoltare în u:

d m P ( u ) d u m = k = 0 ( m ) / 2 γ k ( m ) u 2 k m {\displaystyle {\frac {d^{m}P_{\ell }(u)}{du^{m}}}=\sum _{k=0}^{\left\lfloor (\ell -m)/2\right\rfloor }\gamma _{\ell k}^{(m)}\;u^{\ell -2k-m}}

cu

γ k ( m ) = ( 1 ) k 2 ( k ) ( 2 2 k ) ( 2 k ) ! ( 2 k m ) ! . {\displaystyle \gamma _{\ell k}^{(m)}=(-1)^{k}2^{-\ell }{\binom {\ell }{k}}{\binom {2\ell -2k}{\ell }}{\frac {(\ell -2k)!}{(\ell -2k-m)!}}.}

Deoarece z = r cosθ urmează că, acestă derivată înmulțită cu o putere corespunzătoare a lui r, este un simplu polinom în z:

Π m ( z ) r m d m P ( u ) d u m = k = 0 ( m ) / 2 γ k ( m ) r 2 k z 2 k m . {\displaystyle \Pi _{\ell }^{m}(z)\equiv r^{\ell -m}{\frac {d^{m}P_{\ell }(u)}{du^{m}}}=\sum _{k=0}^{\left\lfloor (\ell -m)/2\right\rfloor }\gamma _{\ell k}^{(m)}\;r^{2k}\;z^{\ell -2k-m}.}

Parte (x,y)-dependentă

Scriind x = r sinθcosφ și y = r sinθsinφ:

r m sin m θ cos m φ = 1 2 [ ( r sin θ e i φ ) m + ( r sin θ e i φ ) m ] = 1 2 [ ( x + i y ) m + ( x i y ) m ] {\displaystyle r^{m}\sin ^{m}\theta \cos m\varphi ={\frac {1}{2}}\left[(r\sin \theta e^{i\varphi })^{m}+(r\sin \theta e^{-i\varphi })^{m}\right]={\frac {1}{2}}\left[(x+iy)^{m}+(x-iy)^{m}\right]}

De asemenea:

r m sin m θ sin m φ = 1 2 i [ ( r sin θ e i φ ) m ( r sin θ e i φ ) m ] = 1 2 i [ ( x + i y ) m ( x i y ) m ] . {\displaystyle r^{m}\sin ^{m}\theta \sin m\varphi ={\frac {1}{2i}}\left[(r\sin \theta e^{i\varphi })^{m}-(r\sin \theta e^{-i\varphi })^{m}\right]={\frac {1}{2i}}\left[(x+iy)^{m}-(x-iy)^{m}\right].}

Mai mult:

A m ( x , y ) 1 2 [ ( x + i y ) m + ( x i y ) m ] = p = 0 m ( m p ) x p y m p cos ( m p ) π 2 {\displaystyle A_{m}(x,y)\equiv {\frac {1}{2}}\left[(x+iy)^{m}+(x-iy)^{m}\right]=\sum _{p=0}^{m}{\binom {m}{p}}x^{p}y^{m-p}\cos(m-p){\frac {\pi }{2}}}

și

B m ( x , y ) 1 2 i [ ( x + i y ) m ( x i y ) m ] = p = 0 m ( m p ) x p y m p sin ( m p ) π 2 . {\displaystyle B_{m}(x,y)\equiv {\frac {1}{2i}}\left[(x+iy)^{m}-(x-iy)^{m}\right]=\sum _{p=0}^{m}{\binom {m}{p}}x^{p}y^{m-p}\sin(m-p){\frac {\pi }{2}}.}

În total

C m ( x , y , z ) = [ ( 2 δ m 0 ) ( m ) ! ( + m ) ! ] 1 / 2 Π m ( z ) A m ( x , y ) , m = 0 , 1 , , {\displaystyle C_{\ell }^{m}(x,y,z)=\left[{\frac {(2-\delta _{m0})(\ell -m)!}{(\ell +m)!}}\right]^{1/2}\Pi _{\ell }^{m}(z)\;A_{m}(x,y),\qquad m=0,1,\ldots ,\ell }
S m ( x , y , z ) = [ 2 ( m ) ! ( + m ) ! ] 1 / 2 Π m ( z ) B m ( x , y ) , m = 1 , 2 , , . {\displaystyle S_{\ell }^{m}(x,y,z)=\left[{\frac {2(\ell -m)!}{(\ell +m)!}}\right]^{1/2}\Pi _{\ell }^{m}(z)\;B_{m}(x,y),\qquad m=1,2,\ldots ,\ell .}

Lista celor mai scăzute funcții

Sunt listate cele mai scăzute funcții până la l = 5 inclusiv. Aici Π ¯ m ( z ) [ ( 2 δ m 0 ) ( m ) ! ( + m ) ! ] 1 / 2 Π m ( z ) . {\displaystyle {\bar {\Pi }}_{\ell }^{m}(z)\equiv \left[{\tfrac {(2-\delta _{m0})(\ell -m)!}{(\ell +m)!}}\right]^{1/2}\Pi _{\ell }^{m}(z).}


Π ¯ 0 0 = 1 Π ¯ 3 1 = 1 4 6 ( 5 z 2 r 2 ) Π ¯ 4 4 = 1 8 35 Π ¯ 1 0 = z Π ¯ 3 2 = 1 2 15 z Π ¯ 5 0 = 1 8 z ( 63 z 4 70 z 2 r 2 + 15 r 4 ) Π ¯ 1 1 = 1 Π ¯ 3 3 = 1 4 10 Π ¯ 5 1 = 1 8 15 ( 21 z 4 14 z 2 r 2 + r 4 ) Π ¯ 2 0 = 1 2 ( 3 z 2 r 2 ) Π ¯ 4 0 = 1 8 ( 35 z 4 30 r 2 z 2 + 3 r 4 ) Π ¯ 5 2 = 1 4 105 ( 3 z 2 r 2 ) z Π ¯ 2 1 = 3 z Π ¯ 4 1 = 10 4 z ( 7 z 2 3 r 2 ) Π ¯ 5 3 = 1 16 70 ( 9 z 2 r 2 ) Π ¯ 2 2 = 1 2 3 Π ¯ 4 2 = 1 4 5 ( 7 z 2 r 2 ) Π ¯ 5 4 = 3 8 35 z Π ¯ 3 0 = 1 2 z ( 5 z 2 3 r 2 ) Π ¯ 4 3 = 1 4 70 z Π ¯ 5 5 = 3 16 14 {\displaystyle {\begin{aligned}{\bar {\Pi }}_{0}^{0}&=1&{\bar {\Pi }}_{3}^{1}&={\frac {1}{4}}{\sqrt {6}}(5z^{2}-r^{2})&{\bar {\Pi }}_{4}^{4}&={\frac {1}{8}}{\sqrt {35}}\\{\bar {\Pi }}_{1}^{0}&=z&{\bar {\Pi }}_{3}^{2}&={\frac {1}{2}}{\sqrt {15}}\;z&{\bar {\Pi }}_{5}^{0}&={\frac {1}{8}}z(63z^{4}-70z^{2}r^{2}+15r^{4})\\{\bar {\Pi }}_{1}^{1}&=1&{\bar {\Pi }}_{3}^{3}&={\frac {1}{4}}{\sqrt {10}}&{\bar {\Pi }}_{5}^{1}&={\frac {1}{8}}{\sqrt {15}}(21z^{4}-14z^{2}r^{2}+r^{4})\\{\bar {\Pi }}_{2}^{0}&={\frac {1}{2}}(3z^{2}-r^{2})&{\bar {\Pi }}_{4}^{0}&={\frac {1}{8}}(35z^{4}-30r^{2}z^{2}+3r^{4})&{\bar {\Pi }}_{5}^{2}&={\frac {1}{4}}{\sqrt {105}}(3z^{2}-r^{2})z\\{\bar {\Pi }}_{2}^{1}&={\sqrt {3}}z&{\bar {\Pi }}_{4}^{1}&={\frac {\sqrt {10}}{4}}z(7z^{2}-3r^{2})&{\bar {\Pi }}_{5}^{3}&={\frac {1}{16}}{\sqrt {70}}(9z^{2}-r^{2})\\{\bar {\Pi }}_{2}^{2}&={\frac {1}{2}}{\sqrt {3}}&{\bar {\Pi }}_{4}^{2}&={\frac {1}{4}}{\sqrt {5}}(7z^{2}-r^{2})&{\bar {\Pi }}_{5}^{4}&={\frac {3}{8}}{\sqrt {35}}z\\{\bar {\Pi }}_{3}^{0}&={\frac {1}{2}}z(5z^{2}-3r^{2})&{\bar {\Pi }}_{4}^{3}&={\frac {1}{4}}{\sqrt {70}}\;z&{\bar {\Pi }}_{5}^{5}&={\frac {3}{16}}{\sqrt {14}}\\\end{aligned}}}

Cele mai scăzute funcții A m ( x , y ) {\displaystyle A_{m}(x,y)\,} și B m ( x , y ) {\displaystyle B_{m}(x,y)\,} sunt:

m Am Bm
0 1 {\displaystyle 1\,} 0 {\displaystyle 0\,}
1 x {\displaystyle x\,} y {\displaystyle y\,}
2 x 2 y 2 {\displaystyle x^{2}-y^{2}\,} 2 x y {\displaystyle 2xy\,}
3 x 3 3 x y 2 {\displaystyle x^{3}-3xy^{2}\,} 3 x 2 y y 3 {\displaystyle 3x^{2}y-y^{3}\,}
4 x 4 6 x 2 y 2 + y 4 {\displaystyle x^{4}-6x^{2}y^{2}+y^{4}\,} 4 x 3 y 4 x y 3 {\displaystyle 4x^{3}y-4xy^{3}\,}
5 x 5 10 x 3 y 2 + 5 x y 4 {\displaystyle x^{5}-10x^{3}y^{2}+5xy^{4}\,} 5 x 4 y 10 x 2 y 3 + y 5 {\displaystyle 5x^{4}y-10x^{2}y^{3}+y^{5}\,}

Exemple

De exemplu, partea unghiulară a celei de a noua sferică normalizată g a orbitei atomice este:

C 4 2 ( x , y , z ) = 9 4 π 5 16 ( 7 z 2 r 2 ) ( x 2 y 2 ) . {\displaystyle C_{4}^{2}(x,y,z)={\sqrt {\frac {9}{4\pi }}}{\sqrt {\frac {5}{16}}}(7z^{2}-r^{2})(x^{2}-y^{2}).}

Una din cele 7 componente ale multipolului real de ordinul 3(octupol) ale unui sistem de N sarcini qi este:

S 3 1 ( x , y , z ) = 1 4 6 i = 1 N q i ( 5 z i 2 r i 2 ) y i . {\displaystyle S_{3}^{1}(x,y,z)={\frac {1}{4}}{\sqrt {6}}\sum _{i=1}^{N}q_{i}(5z_{i}^{2}-r_{i}^{2})y_{i}.}

Armonicele sferice sub forma carteziană

Următoarele formule exprimă armonicele sferice normalizate în coordonate carteziene (faza Condon-Shortley):

r ( Y m Y m ) = [ 2 + 1 4 π ] 1 / 2 Π ¯ m ( z ) ( ( 1 ) m ( A m + i B m ) / 2 ( A m i B m ) / 2 ) , m > 0. {\displaystyle r^{\ell }\,{\begin{pmatrix}Y_{\ell }^{m}\\Y_{\ell }^{-m}\end{pmatrix}}=\left[{\frac {2\ell +1}{4\pi }}\right]^{1/2}{\bar {\Pi }}_{\ell }^{m}(z){\begin{pmatrix}(-1)^{m}(A_{m}+iB_{m})/{\sqrt {2}}\\\qquad (A_{m}-iB_{m})/{\sqrt {2}}\\\end{pmatrix}},\qquad m>0.}

iar pentru m = 0:

r Y 0 2 + 1 4 π Π ¯ 0 . {\displaystyle r^{\ell }\,Y_{\ell }^{0}\equiv {\sqrt {\frac {2\ell +1}{4\pi }}}{\bar {\Pi }}_{\ell }^{0}.}

Aici

A m ( x , y ) = p = 0 m ( m p ) x p y m p cos ( ( m p ) π 2 ) , {\displaystyle A_{m}(x,y)=\sum _{p=0}^{m}{\binom {m}{p}}x^{p}y^{m-p}\cos((m-p){\frac {\pi }{2}}),}
B m ( x , y ) = p = 0 m ( m p ) x p y m p sin ( ( m p ) π 2 ) , {\displaystyle B_{m}(x,y)=\sum _{p=0}^{m}{\binom {m}{p}}x^{p}y^{m-p}\sin((m-p){\frac {\pi }{2}}),}

iar pentru m > 0:

Π ¯ m ( z ) = [ ( m ) ! ( + m ) ! ] 1 / 2 k = 0 ( m ) / 2 ( 1 ) k 2 ( k ) ( 2 2 k ) ( 2 k ) ! ( 2 k m ) ! r 2 k z 2 k m . {\displaystyle {\bar {\Pi }}_{\ell }^{m}(z)=\left[{\frac {(\ell -m)!}{(\ell +m)!}}\right]^{1/2}\sum _{k=0}^{\left\lfloor (\ell -m)/2\right\rfloor }(-1)^{k}2^{-\ell }{\binom {\ell }{k}}{\binom {2\ell -2k}{\ell }}{\frac {(\ell -2k)!}{(\ell -2k-m)!}}\;r^{2k}\;z^{\ell -2k-m}.}

Pentru m = 0:

Π ¯ 0 ( z ) = k = 0 / 2 ( 1 ) k 2 ( k ) ( 2 2 k ) r 2 k z 2 k . {\displaystyle {\bar {\Pi }}_{\ell }^{0}(z)=\sum _{k=0}^{\left\lfloor \ell /2\right\rfloor }(-1)^{k}2^{-\ell }{\binom {\ell }{k}}{\binom {2\ell -2k}{\ell }}\;r^{2k}\;z^{\ell -2k}.}
Exemple

Folosind expresiile de mai sus pentru Π ¯ m ( z ) {\displaystyle {\bar {\Pi }}_{m}^{\ell }(z)} , A m ( x , y ) {\displaystyle A_{m}(x,y)\,} și B m ( x , y ) {\displaystyle B_{m}(x,y)\,} obținem:

Y 3 1 = 1 r 3 [ 7 4 π 3 16 ] 1 / 2 ( 5 z 2 r 2 ) ( x + i y ) = [ 7 4 π 3 16 ] 1 / 2 ( 5 cos 2 θ 1 ) ( sin θ e i φ ) {\displaystyle Y_{3}^{1}=-{\frac {1}{r^{3}}}\left[{\tfrac {7}{4\pi }}\cdot {\tfrac {3}{16}}\right]^{1/2}(5z^{2}-r^{2})(x+iy)=-\left[{\tfrac {7}{4\pi }}\cdot {\tfrac {3}{16}}\right]^{1/2}(5\cos ^{2}\theta -1)(\sin \theta e^{i\varphi })}
Y 4 2 = 1 r 4 [ 9 4 π 5 32 ] 1 / 2 ( 7 z 2 r 2 ) ( x i y ) 2 = [ 9 4 π 5 32 ] 1 / 2 ( 7 cos 2 θ 1 ) ( sin 2 θ e 2 i φ ) {\displaystyle Y_{4}^{-2}={\frac {1}{r^{4}}}\left[{\tfrac {9}{4\pi }}\cdot {\tfrac {5}{32}}\right]^{1/2}(7z^{2}-r^{2})(x-iy)^{2}=\left[{\tfrac {9}{4\pi }}\cdot {\tfrac {5}{32}}\right]^{1/2}(7\cos ^{2}\theta -1)(\sin ^{2}\theta e^{-2i\varphi })}

Se poate verifica că aceste corespund cu funcțiile listate în tabelul armonicelor sferice.