整拡大

可換環論において、可換環 B とその部分環 A について、B の元 bA 係数のモニック多項式の根であるとき、bA整である(integral over A)という。B のすべての元が A 上整であるとき、BA 上整である、または、BA整拡大(integral extension)であるという。 本記事において、環とは単位元をもつ可換環のこととする。

定義

B を環、A をその部分環とする。bBA整であるとは、

b n + a n 1 b n 1 + + a 1 b + a 0 = 0 {\displaystyle b^{n}+a_{n-1}b^{n-1}+\dotsb +a_{1}b+a_{0}=0}

を満たす自然数 n ≥ 1 と A の元 a0, …, an−1 が存在することである。B の元がすべて A 上整であるとき、BA整である、または、BA整拡大であるという。

B の元で A 上整であるものすべてのなす集合は B の部分環となり、これを B における A整閉包という。B における A の整閉包が A 自身であるとき、AB において整閉であるという。

ABのとき、整、整拡大、整閉包はそれぞれ、代数的、代数拡大代数的閉包と呼ばれる。

  • 整数Z 上整な有理数Q の元は整数しかない。言い換えると、ZZQ における整閉包である。
  • ガウス整数、すなわち a + b 1 , a , b Z {\displaystyle a+b{\sqrt {-1}},a,b\in \mathbf {Z} } の形の複素数は、Z 上整である。 Z [ 1 ] {\displaystyle \mathbf {Z} [{\sqrt {-1}}]} Z Q ( 1 ) {\displaystyle \mathbf {Q} ({\sqrt {-1}})} における整閉包である。
  • Z Q ( 5 ) {\displaystyle \mathbf {Q} ({\sqrt {5}})} における整閉包は、 ( a + b 5 ) / 2 {\displaystyle (a+b{\sqrt {5}})/2} の形の元からなる。ただし、ab は整数であって、 a 2 5 b 2 {\displaystyle a^{2}-5b^{2}} は4の倍数である。この例と直前の例は二次の整数(quadratic integer)の例である。
  • ζ を1の冪根とすると、円分体 Q(ζ) における Z の整閉包は Z[ζ] である[1]
  • Z の複素数体 C における整閉包は代数的整数の環と呼ばれる。
  • k ¯ {\displaystyle {\overline {k}}} が体 k の代数的閉包であれば、多項式環 k ¯ [ x 1 , , x n ] {\displaystyle {\overline {k}}[x_{1},\dots ,x_{n}]} k [ x 1 , , x n ] {\displaystyle k[x_{1},\dots ,x_{n}]} 上整である。
  • 有限群 G が環 A に作用しているとする。このとき AG によって固定される元の集合 AG 上整である。ring of invariants を見よ。
  • 任意の環において1の冪根と冪零元Z 上整である。
  • R を環とし、uR を含む環における単位元とする。このとき[2]
  1. u−1R 上整であるのは、u−1R[u] であるとき、かつそのときに限る。
  2. R [ u ] R [ u 1 ] {\displaystyle R[u]\cap R[u^{-1}]} R 上整である。
n 0 H 0 ( X , O X ( n ) ) {\displaystyle \bigoplus \nolimits _{n\geq 0}\operatorname {H} ^{0}(X,{\mathcal {O}}_{X}(n))}

整元の特徴づけ

B を環とし、A をその部分環とする。このとき B の元 b について次は同値。

  • bA 上整
  • 部分環 A[b] ⊂ BA-加群として有限生成
  • A[b] は有限生成 A-加群である部分環 CB に含まれる
  • 忠実な A[b]-加群 MA 上有限生成なものが存在する
  • 有限生成部分 A-加群 MB が存在し、bMM であり、MB における零化イデアルは0

関連項目

脚注

  1. ^ Milne & ANT, Theorem 6.4
  2. ^ Kaplansky, 1.2. Exercise 4.
  3. ^ Hartshorne 1977, Ch. II, Excercise 5.14

参考文献

  • 堀田, 良之『可換環と体』岩波書店、2006年。ISBN 4-00-005198-9。 
  • J. S. Milne, "Algebraic number theory." available at http://www.jmilne.org/math/