Module de relaxation

Cet article est une ébauche concernant la physique.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

En rhéologie, le module de relaxation permet de rendre compte de la relaxation de contrainte, la déformation étant maintenue constante.

Introduction

La contrainte σ {\displaystyle \sigma } à un temps t {\displaystyle t} ne dépend pour un fluide newtonien que du taux de déformation à ce même temps :

σ ( t ) = η   γ ˙ ( t ) {\displaystyle \sigma (t)=\eta \ {\dot {\gamma }}(t)} .

Par contre, pour un fluide viscoélastique, cette même contrainte va dépendre de l'histoire des taux de déformation via le module de relaxation G ( t ) {\displaystyle G(t)} (ou E ( t ) {\displaystyle E(t)} ) :

σ ( t ) = t G ( t t ) γ ˙ ( t ) d t {\displaystyle \sigma (t)=\int _{-\infty }^{t}G(t-t'){\dot {\gamma }}(t')dt'} .

Physiquement, on s'attend à ce que cette fonction tende vers 0 lorsque t tend vers l'infini ; c'est la perte de mémoire des états les plus anciens.

Dans le cadre du modèle de Maxwell, on montre que le module de relaxation G ( t ) {\displaystyle G(t)} vaut :

G ( t ) = G 0   e t / τ {\displaystyle G(t)=G_{0}\ e^{-t/\tau }}

τ = η E {\displaystyle \tau ={\frac {\eta }{E}}} est le temps de relaxation du modèle de Maxwell.

Annexe : grandeurs complexes

Module complexe

Expérimentalement, on applique en DMA des déformations sinusoïdales. On définit une déformation complexe :

γ ( t ) = γ 0   e i ω t {\displaystyle \gamma (t)=\gamma _{0}\ e^{i\omega t}}

ce qui amène à une contrainte complexe :

σ ( t ) = i ω γ ( t ) 0 G ( x ) e x p ( i ω x ) d x = G ( t ) γ ( t ) {\displaystyle \sigma (t)=i\omega \gamma (t)\int _{0}^{\infty }G(x)exp(-i\omega x)dx=G^{*}(t)\gamma (t)}

avec :

x = t t {\displaystyle x=t-t'}  ;
G {\displaystyle G^{*}} , le module de cisaillement complexe. Celui-ci se décompose comme la somme d'une partie réelle et d'une partie imaginaire :
G ( ω ) = G ( ω ) + i G ( ω ) {\displaystyle G^{*}(\omega )=G'(\omega )+iG''(\omega )}

où :

G {\displaystyle G'} est le module de conservation ;
G {\displaystyle G''} est le module de perte.

Le facteur de perte indique la capacité d'une matière viscoélastique à dissiper de l'énergie mécanique en chaleur. Il est donné par l'équation :

tan δ = G G {\displaystyle \tan \delta ={\frac {G''}{G'}}}

δ {\displaystyle \delta } est l'angle de phase ou de perte.

Une valeur faible du facteur de perte traduit un comportement élastique marqué : le matériau étant soumis à une sollicitation, la dissipation d'énergie par frottement interne est faible.

Viscosité complexe

Il est par ailleurs possible de définir une viscosité complexe de la manière suivante :

σ = η ( ω )   γ ˙ = ( η ( ω ) i η ( ω ) )   γ ˙ {\displaystyle \sigma =\eta ^{*}(\omega )\ {\dot {\gamma }}=(\eta '(\omega )-i\eta ''(\omega ))\ {\dot {\gamma }}}

avec :

η = G ω {\displaystyle \eta '={\frac {G''}{\omega }}} , associée au module de perte,
η = G ω {\displaystyle \eta ''={\frac {G'}{\omega }}} , associée au module de conservation.

Voir aussi

Articles connexes

v · m
Modules d'élasticité pour des matériaux homogènes et isotropes
Formules de conversion
Les propriétés élastiques des matériaux homogènes, isotropes et linéaires sont déterminées de manière unique par deux modules quelconques parmi ceux-ci. Ainsi, on peut calculer chacun à partir de deux d'entre eux en utilisant ces formules.

formules en 3D

( λ , G ) {\displaystyle (\lambda ,G)}

( E , G ) {\displaystyle (E,G)}

( K , λ ) {\displaystyle (K,\lambda )}

( K , G ) {\displaystyle (K,G)}

( λ , ν ) {\displaystyle (\lambda ,\nu )}

( G , ν ) {\displaystyle (G,\nu )}

( E , ν ) {\displaystyle (E,\nu )}

( K , ν ) {\displaystyle (K,\nu )}

( K , E ) {\displaystyle (K,E)}

( M , G ) {\displaystyle (M,G)}

K [ P a ] = {\displaystyle K\,[\mathrm {Pa} ]=}

λ + 2 G 3 {\displaystyle \lambda +{\tfrac {2G}{3}}}

E G 3 ( 3 G E ) {\displaystyle {\tfrac {EG}{3(3G-E)}}}

 

 

λ ( 1 + ν ) 3 ν {\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}}

2 G ( 1 + ν ) 3 ( 1 2 ν ) {\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}}

E 3 ( 1 2 ν ) {\displaystyle {\tfrac {E}{3(1-2\nu )}}}

 

 

M 4 G 3 {\displaystyle M-{\tfrac {4G}{3}}}

E [ P a ] = {\displaystyle E\,[\mathrm {Pa} ]=}

G ( 3 λ + 2 G ) λ + G {\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}}

 

9 K ( K λ ) 3 K λ {\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}}

9 K G 3 K + G {\displaystyle {\tfrac {9KG}{3K+G}}}

λ ( 1 + ν ) ( 1 2 ν ) ν {\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}}

2 G ( 1 + ν ) {\displaystyle 2G(1+\nu )\,}

 

3 K ( 1 2 ν ) {\displaystyle 3K(1-2\nu )\,}

 

G ( 3 M 4 G ) M G {\displaystyle {\tfrac {G(3M-4G)}{M-G}}}

λ [ P a ] = {\displaystyle \lambda \,[\mathrm {Pa} ]=}

 

G ( E 2 G ) 3 G E {\displaystyle {\tfrac {G(E-2G)}{3G-E}}}

 

K 2 G 3 {\displaystyle K-{\tfrac {2G}{3}}}

 

2 G ν 1 2 ν {\displaystyle {\tfrac {2G\nu }{1-2\nu }}}

E ν ( 1 + ν ) ( 1 2 ν ) {\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}}

3 K ν 1 + ν {\displaystyle {\tfrac {3K\nu }{1+\nu }}}

3 K ( 3 K E ) 9 K E {\displaystyle {\tfrac {3K(3K-E)}{9K-E}}}

M 2 G {\displaystyle M-2G}

G [ P a ] = {\displaystyle G\,[\mathrm {Pa} ]=}

 

 

3 ( K λ ) 2 {\displaystyle {\tfrac {3(K-\lambda )}{2}}}

 

λ ( 1 2 ν ) 2 ν {\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}}

 

E 2 ( 1 + ν ) {\displaystyle {\tfrac {E}{2(1+\nu )}}}

3 K ( 1 2 ν ) 2 ( 1 + ν ) {\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}}

3 K E 9 K E {\displaystyle {\tfrac {3KE}{9K-E}}}

 

ν [ 1 ] = {\displaystyle \nu \,[1]=}

λ 2 ( λ + G ) {\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}}

E 2 G 1 {\displaystyle {\tfrac {E}{2G}}-1}

λ 3 K λ {\displaystyle {\tfrac {\lambda }{3K-\lambda }}}

3 K 2 G 2 ( 3 K + G ) {\displaystyle {\tfrac {3K-2G}{2(3K+G)}}}

 

 

 

 

3 K E 6 K {\displaystyle {\tfrac {3K-E}{6K}}}

M 2 G 2 M 2 G {\displaystyle {\tfrac {M-2G}{2M-2G}}}

M [ P a ] = {\displaystyle M\,[\mathrm {Pa} ]=}

λ + 2 G {\displaystyle \lambda +2G}

G ( 4 G E ) 3 G E {\displaystyle {\tfrac {G(4G-E)}{3G-E}}}

3 K 2 λ {\displaystyle 3K-2\lambda \,}

K + 4 G 3 {\displaystyle K+{\tfrac {4G}{3}}}

λ ( 1 ν ) ν {\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}}

2 G ( 1 ν ) 1 2 ν {\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}}

E ( 1 ν ) ( 1 + ν ) ( 1 2 ν ) {\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}}

3 K ( 1 ν ) 1 + ν {\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}}

3 K ( 3 K + E ) 9 K E {\displaystyle {\tfrac {3K(3K+E)}{9K-E}}}

 

formules en 2D

( λ 2 D , G 2 D ) {\displaystyle (\lambda _{\mathrm {2D} },G_{\mathrm {2D} })}

( E 2 D , G 2 D ) {\displaystyle (E_{\mathrm {2D} },G_{\mathrm {2D} })}

( K 2 D , λ 2 D ) {\displaystyle (K_{\mathrm {2D} },\lambda _{\mathrm {2D} })}

( K 2 D , G 2 D ) {\displaystyle (K_{\mathrm {2D} },G_{\mathrm {2D} })}

( λ 2 D , ν 2 D ) {\displaystyle (\lambda _{\mathrm {2D} },\nu _{\mathrm {2D} })}

( G 2 D , ν 2 D ) {\displaystyle (G_{\mathrm {2D} },\nu _{\mathrm {2D} })}

( E 2 D , ν 2 D ) {\displaystyle (E_{\mathrm {2D} },\nu _{\mathrm {2D} })}

( K 2 D , ν 2 D ) {\displaystyle (K_{\mathrm {2D} },\nu _{\mathrm {2D} })}

( K 2 D , E 2 D ) {\displaystyle (K_{\mathrm {2D} },E_{\mathrm {2D} })}

( M 2 D , G 2 D ) {\displaystyle (M_{\mathrm {2D} },G_{\mathrm {2D} })}

K 2 D [ N / m ] = {\displaystyle K_{\mathrm {2D} }\,[\mathrm {N/m} ]=}

λ 2 D + G 2 D {\displaystyle \lambda _{\mathrm {2D} }+G_{\mathrm {2D} }}

G 2 D E 2 D 4 G 2 D E 2 D {\displaystyle {\tfrac {G_{\mathrm {2D} }E_{\mathrm {2D} }}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

 

 

λ 2 D ( 1 + ν 2 D ) 2 ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}

G 2 D ( 1 + ν 2 D ) 1 ν 2 D {\displaystyle {\tfrac {G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{1-\nu _{\mathrm {2D} }}}}

E 2 D 2 ( 1 ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1-\nu _{\mathrm {2D} })}}}

 

 

M 2 D G 2 D {\displaystyle M_{\mathrm {2D} }-G_{\mathrm {2D} }}

E 2 D [ N / m ] = {\displaystyle E_{\mathrm {2D} }\,[\mathrm {N/m} ]=}

4 G 2 D ( λ 2 D + G 2 D ) λ 2 D + 2 G 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }(\lambda _{\mathrm {2D} }+G_{\mathrm {2D} })}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}

 

4 K 2 D ( K 2 D λ 2 D ) 2 K 2 D λ 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }(K_{\mathrm {2D} }-\lambda _{\mathrm {2D} })}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}

4 K 2 D G 2 D K 2 D + G 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}

λ 2 D ( 1 + ν 2 D ) ( 1 ν 2 D ) ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}{\nu _{\mathrm {2D} }}}}

2 G 2 D ( 1 + ν 2 D ) {\displaystyle 2G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })\,}

 

2 K 2 D ( 1 ν 2 D ) {\displaystyle 2K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}

 

4 G 2 D ( M 2 D G 2 D ) M 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }(M_{\mathrm {2D} }-G_{\mathrm {2D} })}{M_{\mathrm {2D} }}}}

λ 2 D [ N / m ] = {\displaystyle \lambda _{\mathrm {2D} }\,[\mathrm {N/m} ]=}

 

2 G 2 D ( E 2 D 2 G 2 D ) 4 G 2 D E 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }(E_{\mathrm {2D} }-2G_{\mathrm {2D} })}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

 

K 2 D G 2 D {\displaystyle K_{\mathrm {2D} }-G_{\mathrm {2D} }}

 

2 G 2 D ν 2 D 1 ν 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}

E 2 D ν 2 D ( 1 + ν 2 D ) ( 1 ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }\nu _{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}}

2 K 2 D ν 2 D 1 + ν 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}

2 K 2 D ( 2 K 2 D E 2 D ) 4 K 2 D E 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }(2K_{\mathrm {2D} }-E_{\mathrm {2D} })}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

M 2 D 2 G 2 D {\displaystyle M_{\mathrm {2D} }-2G_{\mathrm {2D} }}

G 2 D [ N / m ] = {\displaystyle G_{\mathrm {2D} }\,[\mathrm {N/m} ]=}

 

 

K 2 D λ 2 D {\displaystyle K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}

 

λ 2 D ( 1 ν 2 D ) 2 ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}

 

E 2 D 2 ( 1 + ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1+\nu _{\mathrm {2D} })}}}

K 2 D ( 1 ν 2 D ) 1 + ν 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{1+\nu _{\mathrm {2D} }}}}

K 2 D E 2 D 4 K 2 D E 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }E_{\mathrm {2D} }}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

 

ν 2 D [ 1 ] = {\displaystyle \nu _{\mathrm {2D} }\,[1]=}

λ 2 D λ 2 D + 2 G 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}

E 2 D 2 G 2 D 1 {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2G_{\mathrm {2D} }}}-1}

λ 2 D 2 K 2 D λ 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}

K 2 D G 2 D K 2 D + G 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }-G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}

 

 

 

 

2 K 2 D E 2 D 2 K 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }-E_{\mathrm {2D} }}{2K_{\mathrm {2D} }}}}

M 2 D 2 G 2 D M 2 D {\displaystyle {\tfrac {M_{\mathrm {2D} }-2G_{\mathrm {2D} }}{M_{\mathrm {2D} }}}}

M 2 D [ N / m ] = {\displaystyle M_{\mathrm {2D} }\,[\mathrm {N/m} ]=}

λ 2 D + 2 G 2 D {\displaystyle \lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}

4 G 2 D 2 4 G 2 D E 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }^{2}}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

2 K 2 D λ 2 D {\displaystyle 2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}

K 2 D + G 2 D {\displaystyle K_{\mathrm {2D} }+G_{\mathrm {2D} }}

λ 2 D ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\nu _{\mathrm {2D} }}}}

2 G 2 D 1 ν 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}

E 2 D ( 1 ν 2 D ) ( 1 + ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{(1-\nu _{\mathrm {2D} })(1+\nu _{\mathrm {2D} })}}}

2 K 2 D 1 + ν 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}

4 K 2 D 2 4 K 2 D E 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }^{2}}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}

 

  • icône décorative Portail de la physique