Anexo:Integrales de funciones exponenciales

La siguiente es una lista de integrales de funciones exponenciales (Agréguese a cada integral una constante arbitraria).

a c x d x = 1 c ln a a c x {\displaystyle \int a^{cx}\;dx={\frac {1}{c\ln a}}a^{cx}}
e c x d x = 1 c e c x {\displaystyle \int e^{cx}\;dx={\frac {1}{c}}e^{cx}}
x e c x d x = e c x c 2 ( c x 1 ) {\displaystyle \int xe^{cx}\;dx={\frac {e^{cx}}{c^{2}}}(cx-1)}
x 2 e c x d x = e c x ( x 2 c 2 x c 2 + 2 c 3 ) {\displaystyle \int x^{2}e^{cx}\;dx=e^{cx}\left({\frac {x^{2}}{c}}-{\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)}
x n e c x d x = 1 c x n e c x n c x n 1 e c x d x {\displaystyle \int x^{n}e^{cx}\;dx={\frac {1}{c}}x^{n}e^{cx}-{\frac {n}{c}}\int x^{n-1}e^{cx}dx}
e c x d x x = ln | x | + i = 1 ( c x ) i i i ! {\displaystyle \int {\frac {e^{cx}\;dx}{x}}=\ln |x|+\sum _{i=1}^{\infty }{\frac {(cx)^{i}}{i\cdot i!}}}
e a x 2 + b x + c d x = i e b 4 a c 4 a a π 2 e r f ( 2 a x + b 2 a i ) c o n > 0 y a > 0 {\displaystyle \int {{e}^{{ax}^{2}\mathrm {+} {bx}\mathrm {+} {c}}}{dx}\mathrm {=} \mathrm {-} {\frac {i}{{e}^{\frac {{b}\mathrm {-} {4}{ac}}{4a}}}}{\sqrt {a}}{\frac {\mathit {\pi }}{2}}{erf}\left({{\frac {{2}{ax}\mathrm {+} {b}}{2{\sqrt {a}}}}i}\right)\;{con}\;\mathrm {\bigtriangleup } {\mathrm {>} }{0}\;{y}\;{a}{\mathrm {>} }{0}} [1]
e c x d x x n = 1 n 1 ( e c x x n 1 + c e c x d x x n 1 ) (para  n 1 ) {\displaystyle \int {\frac {e^{cx}\;dx}{x^{n}}}={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}dx}{x^{n-1}}}\right)\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
e c x ln x d x = 1 c ( e c x ln | x | e c x d x x ) {\displaystyle \int e^{cx}\ln x\;dx={\frac {1}{c}}\left(e^{cx}\ln |x|-\int {\frac {e^{cx}dx}{x}}\right)}
e c x sen b x d x = e c x c 2 + b 2 ( c sen b x b cos b x ) {\displaystyle \int e^{cx}\operatorname {sen} bx\;dx={\frac {e^{cx}}{c^{2}+b^{2}}}(c\operatorname {sen} bx-b\cos bx)}
e c x cos b x d x = e c x c 2 + b 2 ( c cos b x + b sen b x ) {\displaystyle \int e^{cx}\cos bx\;dx={\frac {e^{cx}}{c^{2}+b^{2}}}(c\cos bx+b\operatorname {sen} bx)}
e c x sen n x d x = e c x sen n 1 x c 2 + n 2 ( c sen x n cos x ) + n ( n 1 ) c 2 + n 2 e c x sen n 2 x d x {\displaystyle \int e^{cx}\operatorname {sen} ^{n}x\;dx={\frac {e^{cx}\operatorname {sen} ^{n-1}x}{c^{2}+n^{2}}}(c\operatorname {sen} x-n\cos x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\operatorname {sen} ^{n-2}x\;dx}
e c x cos n x d x = e c x cos n 1 x c 2 + n 2 ( c cos x + n sen x ) + n ( n 1 ) c 2 + n 2 e c x cos n 2 x d x {\displaystyle \int e^{cx}\cos ^{n}x\;dx={\frac {e^{cx}\cos ^{n-1}x}{c^{2}+n^{2}}}(c\cos x+n\operatorname {sen} x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\cos ^{n-2}x\;dx}
1 σ 2 π e ( x μ ) 2 / 2 σ 2 d x = 1 2 σ ( 1 + erf x μ σ ( 2 ) ) {\displaystyle \int {1 \over \sigma {\sqrt {2\pi }}}\,e^{-{(x-\mu )^{2}/2\sigma ^{2}}}\;dx={\frac {1}{2\sigma }}\left(1+{\mbox{erf}}\,{\frac {x-\mu }{\sigma {\sqrt {(}}2)}}\right)}
e α x 2 d x = π α = I ( α ) {\displaystyle \int _{-\infty }^{\infty }e^{-\alpha x^{2}}dx={\sqrt {\frac {\pi }{\alpha }}}=I(\alpha )}
x 2 n e α x 2 d x = ( 1 ) n d n d α n   I ( α )   si n = 1   = π 2 α 3 / 2 {\displaystyle \int _{-\infty }^{\infty }x^{2n}e^{-\alpha x^{2}}dx=(-1)^{n}{\frac {d^{n}}{d\alpha ^{n}}}\ I(\alpha )\ {\xrightarrow {\mbox{si n = 1}}}\ ={\frac {\sqrt {\pi }}{2\alpha ^{3/2}}}}

Referencias

  1. Math by Gaabriel, Gabriel, Ver video en YouTube [Integral de e^(ax²+bx+c) con Discriminante Positivo], consultado el 22 de agosto de 2021 .