Irrationality measure

Function that quantifies how near a number is to being rational.

An irrationality measure of a real number α {\displaystyle \alpha } is a measure of how "closely" it can be approximated by rationals. If a function f ( x , λ ) {\displaystyle f(x,\lambda )} , defined for positive real numbers, strictly decreasing in both x {\displaystyle x} and λ {\displaystyle \lambda } is given, consider the following inequality:

0 < | α p q | < f ( q , λ ) {\displaystyle 0<\left|\alpha -{\frac {p}{q}}\right|<f(q,\lambda )}

for a given real number α R {\displaystyle \alpha \in \mathbb {R} } and rational numbers p q {\displaystyle {\frac {p}{q}}} with p Z , q Z + {\displaystyle p\in \mathbb {Z} ,q\in \mathbb {Z} ^{+}} . Define M {\displaystyle M} as the set of all λ R + {\displaystyle \lambda \in \mathbb {R} ^{+}} for which only finitely many p q {\displaystyle {\frac {p}{q}}} exist, such that the inequality is satisfied. Then λ ( α ) = inf M {\displaystyle \lambda (\alpha )=\inf M} is called an irrationality measure of α {\displaystyle \alpha } with regard to f . {\displaystyle f.} If there is no such λ {\displaystyle \lambda } and the set M {\displaystyle M} is empty, α {\displaystyle \alpha } is said to have infinite irrationality measure λ ( α ) = {\displaystyle \lambda (\alpha )=\infty } .

Consequently the inequality

0 < | α p q | < f ( q , λ ( α ) + ε ) {\displaystyle 0<\left|\alpha -{\frac {p}{q}}\right|<f(q,\lambda (\alpha )+\varepsilon )}

has at most only finitely many solutions p q {\displaystyle {\frac {p}{q}}} .[1]

Irrationality exponent

The irrationality exponent or Liouville–Roth irrationality measure is given by setting f ( x , μ ) = x μ {\displaystyle f(x,\mu )=x^{-\mu }} ,[1] a definition adapting the one of Liouville numbers — the irrationality exponent μ ( x ) {\displaystyle \mu (x)} is defined to be the supremum of the set of μ {\displaystyle \mu } such that 0 < | α p q | < 1 q μ {\displaystyle 0<\left|\alpha -{\frac {p}{q}}\right|<{\frac {1}{q^{\mu }}}} is satisfied by an infinite number of coprime integer pairs ( p , q ) {\displaystyle (p,q)} with q > 0 {\displaystyle q>0} .[2][3]: 246  For any value n μ ( α ) {\displaystyle n\leq \mu (\alpha )} , the infinite set of all rationals p / q {\displaystyle p/q} satisfying the above inequality yields good approximations of α {\displaystyle \alpha } . Conversely, if n > μ ( x ) {\displaystyle n>\mu (x)} , then there are at most finitely many coprime ( p , q ) {\displaystyle (p,q)} with q > 0 {\displaystyle q>0} that satisfy the inequality.

For example, whenever a rational approximation α p q {\displaystyle \alpha \approx {\frac {p}{q}}} , p , q N {\displaystyle p,q\in \mathbb {N} } yields n + 1 {\displaystyle n+1} exact decimal digits, then

1 10 n | x p q | 1 q μ ( x ) + ε {\displaystyle {\frac {1}{10^{n}}}\geq \left|x-{\frac {p}{q}}\right|\geq {\frac {1}{q^{\mu (x)+\varepsilon }}}}

for any ε > 0 {\displaystyle \varepsilon >0} , except for at most a finite number of "lucky" pairs ( p , q ) {\displaystyle (p,q)} .

Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2.

On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic numbers, have an irrationality exponent equal to 2.[3]: 246 

A number α R {\displaystyle \alpha \in \mathbb {R} } with irrationality exponent μ ( α ) = 2 {\displaystyle \mu (\alpha )=2} is called a diophantine number,[4] while numbers with μ ( α ) = {\displaystyle \mu (\alpha )=\infty } are called Liouville numbers.

It is μ ( α ) = μ ( r α + s ) {\displaystyle \mu (\alpha )=\mu (r\alpha +s)} for real numbers α {\displaystyle \alpha } and rational numbers r 0 {\displaystyle r\neq 0} and s {\displaystyle s} .

If a real number α {\displaystyle \alpha } is given by its simple continued fraction expansion α = [ a 0 ; a 1 , a 2 , . . . ] {\displaystyle \alpha =[a_{0};a_{1},a_{2},...]} with convergents p i / q i {\displaystyle p_{i}/q_{i}} then it holds:

μ ( α ) = 1 + lim sup n ln q n + 1 ln q n = 2 + lim sup n ln a n + 1 ln q n {\displaystyle \mu (\alpha )=1+\limsup _{n\to \infty }{\frac {\ln q_{n+1}}{\ln q_{n}}}=2+\limsup _{n\to \infty }{\frac {\ln a_{n+1}}{\ln q_{n}}}} .[1]

Below is a table of known upper and lower bounds for the irrationality exponents of certain numbers.

Number x {\displaystyle x} Irrationality exponent μ ( α ) {\displaystyle \mu (\alpha )} Notes
Lower bound Upper bound
Rational number p q {\displaystyle {\frac {p}{q}}} with p Z , q Z + {\displaystyle p\in \mathbb {Z} ,q\in \mathbb {Z} ^{+}} 1 Every rational number p q {\displaystyle {\frac {p}{q}}} has an irrationality exponent of exactly 1.
Irrational algebraic number a {\displaystyle a} 2 By Roth's theorem the irrationality exponent of any irrational algebraic number is exactly 2. Examples include square roots like 2 {\displaystyle {\sqrt {2}}} and the golden ratio φ {\displaystyle \varphi } .
e 2 / k , k Z + {\displaystyle e^{2/k},k\in \mathbb {Z} ^{+}} 2 If the elements a n {\displaystyle a_{n}} of the simple continued fraction expansion of an irrational number α {\displaystyle \alpha } are bounded above a n < P ( n ) {\displaystyle a_{n}<P(n)} by an arbitrary polynomial P {\displaystyle P} , then its irrationality exponent is μ ( α ) = 2 {\displaystyle \mu (\alpha )=2} .

Examples include numbers which continued fractions behave predictably such as:

e = [ 2 ; 1 , 2 , 1 , 1 , 4 , 1 , 1 , 6 , 1 , 1 , . . . ] {\displaystyle e=[2;1,2,1,1,4,1,1,6,1,1,...]} and I 0 ( 1 ) / I 1 ( 1 ) = [ 2 ; 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 , 22... ] {\displaystyle I_{0}(1)/I_{1}(1)=[2;4,6,8,10,12,14,16,18,20,22...]}

tanh ( 1 k ) , k Z + {\displaystyle \tanh \left({\frac {1}{k}}\right),k\in \mathbb {Z} ^{+}} 2
tan ( 1 k ) , k Z + {\displaystyle \tan \left({\frac {1}{k}}\right),k\in \mathbb {Z} ^{+}} 2
T ( b ) {\displaystyle T(b)} with b 2 {\displaystyle b\geq 2} [5] 2 T ( b ) := k = 0 t k b k {\displaystyle T(b):=\sum _{k=0}^{\infty }t_{k}b^{-k}} where t k {\displaystyle t_{k}} is the k {\displaystyle k} -th term of the Thue–Morse sequence and b Z {\displaystyle b\in \mathbb {Z} } . See Prouhet-Thue-Morse constant.
ln ( 2 ) {\displaystyle \ln(2)} [6][7] 2 3.57455... There are other numbers of the form ln a {\displaystyle \ln a} for which bounds on their irrationality exponents are known.[8][9][10]
ln ( 3 ) {\displaystyle \ln(3)} [6][11] 2 5.11620...
5 ln ( 3 / 2 ) {\displaystyle 5\ln(3/2)} [12] 2 3.43506... There are many other numbers of the form 2 k + 1 ln ( 2 k + 1 + 1 2 k + 1 1 ) {\displaystyle {\sqrt {2k+1}}\ln \left({\frac {{\sqrt {2k+1}}+1}{{\sqrt {2k+1}}-1}}\right)} for which bounds on their irrationality exponents are known.[12] This is the case for k = 12 {\displaystyle k=12} .
π / 3 {\displaystyle \pi /{\sqrt {3}}} [13][14] 2 4.60105... There are many other numbers of the form 2 k 1 arctan ( 2 k 1 k 1 ) {\displaystyle {\sqrt {2k-1}}\arctan \left({\frac {\sqrt {2k-1}}{k-1}}\right)} for which bounds on their irrationality exponents are known.[13] This is the case for k = 2 {\displaystyle k=2} .
π {\displaystyle \pi } [6][15] 2 7.10320... It has been proven that if the Flint Hills series n = 1 csc 2 n n 3 {\displaystyle \displaystyle \sum _{n=1}^{\infty }{\frac {\csc ^{2}n}{n^{3}}}} (where n is in radians) converges, then π {\displaystyle \pi } 's irrationality exponent is at most 2.5;[16][17] and that if it diverges, the irrationality exponent is at least 2.5.[18]
π 2 {\displaystyle \pi ^{2}} and ζ ( 2 ) {\displaystyle \zeta (2)} [6][19] 2 5.09541... π 2 {\displaystyle \pi ^{2}} and ζ ( 2 ) {\displaystyle \zeta (2)} are linearly dependent over Q {\displaystyle \mathbb {Q} } .
arctan ( 1 / 2 ) {\displaystyle \arctan(1/2)} [20] 2 9.27204... There are many other numbers of the form arctan ( 1 / k ) {\displaystyle \arctan(1/k)} for which bounds on their irrationality exponents are known.[21][22]
arctan ( 1 / 3 ) {\displaystyle \arctan(1/3)} [23] 2 5.94202...
Apéry's constant ζ ( 3 ) {\displaystyle \zeta (3)} [6] 2 5.51389...
Γ ( 1 / 4 ) {\displaystyle \Gamma (1/4)} [24] 2 10330
Cahen's constant C {\displaystyle C} [25] 3
Champernowne constants C b {\displaystyle C_{b}} in base b 2 {\displaystyle b\geq 2} [26] b {\displaystyle b} Examples include C 10 = 0.1234567891011... = [ 0 ; 8 , 9 , 1 , 149083 , 1 , . . . ] {\displaystyle C_{10}=0.1234567891011...=[0;8,9,1,149083,1,...]}
Liouville numbers L {\displaystyle L} {\displaystyle \infty } The Liouville numbers are precisely those numbers having infinite irrationality exponent.[3]: 248 

Irrationality base

The irrationality base or Sondow irrationality measure is obtained by setting f ( x , β ) = β x {\displaystyle f(x,\beta )=\beta ^{-x}} .[1][27] It is a weaker irrationality measure, being able to distinguish how well different Liouville numbers can be approximated, but yielding β ( α ) = 1 {\displaystyle \beta (\alpha )=1} for all other real numbers:

Let α {\displaystyle \alpha } be an irrational number. If there exist real numbers β 1 {\displaystyle \beta \geq 1} with the property that for any ε > 0 {\displaystyle \varepsilon >0} , there is a positive integer q ( ε ) {\displaystyle q(\varepsilon )} such that

| α p q | > 1 ( β + ε ) q {\displaystyle \left|\alpha -{\frac {p}{q}}\right|>{\frac {1}{(\beta +\varepsilon )^{q}}}}

for all integers p , q {\displaystyle p,q} with q q ( ε ) {\displaystyle q\geq q(\varepsilon )} then the least such β {\displaystyle \beta } is called the irrationality base of α {\displaystyle \alpha } and is represented as β ( α ) {\displaystyle \beta (\alpha )}

If no such β {\displaystyle \beta } exists, then β ( α ) = {\displaystyle \beta (\alpha )=\infty } and α {\displaystyle \alpha } is called a super Liouville number.

If a real number α {\displaystyle \alpha } is given by its simple continued fraction expansion α = [ a 0 ; a 1 , a 2 , . . . ] {\displaystyle \alpha =[a_{0};a_{1},a_{2},...]} with convergents p i / q i {\displaystyle p_{i}/q_{i}} then it holds:

β ( α ) = lim sup n ln q n + 1 q n = lim sup n ln a n + 1 q n {\displaystyle \beta (\alpha )=\limsup _{n\to \infty }{\frac {\ln q_{n+1}}{q_{n}}}=\limsup _{n\to \infty }{\frac {\ln a_{n+1}}{q_{n}}}} .[1]

Examples:

Any real number α {\displaystyle \alpha } with finite irrationality exponent μ ( α ) < {\displaystyle \mu (\alpha )<\infty } has irrationality base β ( α ) = 1 {\displaystyle \beta (\alpha )=1} , while any number with irrationality base β ( α ) > 1 {\displaystyle \beta (\alpha )>1} has irrationality exponent μ ( α ) = {\displaystyle \mu (\alpha )=\infty } and is a Liouville number.

The number L = [ 1 ; 2 , 2 2 , 2 2 2 , . . . ] {\displaystyle L=[1;2,2^{2},2^{2^{2}},...]} has irrationality exponent μ ( L ) = {\displaystyle \mu (L)=\infty } and irrationality base β ( L ) = 1 {\displaystyle \beta (L)=1} .

The numbers τ a = n = 0 1 n a = 1 + 1 a + 1 a a + 1 a a a + 1 a a a a + . . . {\displaystyle \tau _{a}=\sum _{n=0}^{\infty }{\frac {1}{^{n}a}}=1+{\frac {1}{a}}+{\frac {1}{a^{a}}}+{\frac {1}{a^{a^{a}}}}+{\frac {1}{a^{a^{a^{a}}}}}+...} ( n a {\displaystyle {^{n}a}} represents tetration, a = 2 , 3 , 4... {\displaystyle a=2,3,4...} ) have irrationality base β ( τ a ) = a {\displaystyle \beta (\tau _{a})=a} .

The number S = 1 + 1 2 1 + 1 4 2 1 + 1 8 4 2 1 + 1 16 8 4 2 1 + 1 32 16 8 4 2 1 + {\displaystyle S=1+{\frac {1}{2^{1}}}+{\frac {1}{4^{2^{1}}}}+{\frac {1}{8^{4^{2^{1}}}}}+{\frac {1}{16^{8^{4^{2^{1}}}}}}+{\frac {1}{32^{16^{8^{4^{2^{1}}}}}}}+\ldots } has irrationality base β ( S ) = {\displaystyle \beta (S)=\infty } , hence it is a super Liouville number.

Other irrationality measures

Markov constant

Setting f ( x , M ) = ( M x ) 2 {\displaystyle f(x,M)=(Mx)^{-2}} gives a stronger irrationality measure: the Markov constant M ( α ) {\displaystyle M(\alpha )} of an irrational number α R Q {\displaystyle \alpha \in \mathbb {R} \setminus \mathbb {Q} } , the factor by which Dirichlet's approximation theorem can be improved for α {\displaystyle \alpha } . Namely if A < M ( α ) {\displaystyle A<M(\alpha )} is a positive real number, than the inequality

0 < | α p q | < 1 A q 2 {\displaystyle 0<\left|\alpha -{\frac {p}{q}}\right|<{\frac {1}{Aq^{2}}}}

has infinitely many solutions p q Q {\displaystyle {\frac {p}{q}}\in \mathbb {Q} } . If A > M ( α ) {\displaystyle A>M(\alpha )} there are at most finitely many solutions.

Dirichlet's approximation theorem implies M ( α ) 1 {\displaystyle M(\alpha )\geq 1} and Hurwitz's theorem gives M ( α ) 5 {\displaystyle M(\alpha )\geq {\sqrt {5}}} both for irrational α . {\displaystyle \alpha .} [28]

This is in fact the best general lower bound since the golden ratio gives M ( φ ) = 5 {\displaystyle M(\varphi )={\sqrt {5}}} . It is also M ( 2 ) = 2 2 {\displaystyle M({\sqrt {2}})=2{\sqrt {2}}} .

Given α = [ a 0 ; a 1 , a 2 , . . . ] {\displaystyle \alpha =[a_{0};a_{1},a_{2},...]} by its simple continued fraction expansion, one may obtain M ( α ) = lim sup n ( [ a n + 1 ; a n + 2 , a n + 3 , . . . ] + [ 0 ; a n , a n 1 , . . . , a 2 , a 1 ] ) {\displaystyle M(\alpha )=\limsup _{n\to \infty }{([a_{n+1};a_{n+2},a_{n+3},...]+[0;a_{n},a_{n-1},...,a_{2},a_{1}])}} .[29]

Bounds for the Markov constant of α = [ a 0 ; a 1 , a 2 , . . . ] {\displaystyle \alpha =[a_{0};a_{1},a_{2},...]} can also be given by p 2 + 4 M ( α ) < p + 2 {\displaystyle {\sqrt {p^{2}+4}}\leq M(\alpha )<p+2} with p = lim sup n a n {\displaystyle p=\limsup _{n\to \infty }a_{n}} .[30] This implies that M ( α ) = {\displaystyle M(\alpha )=\infty } if and only if ( a k ) {\displaystyle (a_{k})} is not bounded and in particular, M ( α ) < {\displaystyle M(\alpha )<\infty } if α {\displaystyle \alpha } is a quadratic irrational number. A further consequence is M ( e ) = {\displaystyle M(e)=\infty } .

Any number with μ ( α ) > 2 {\displaystyle \mu (\alpha )>2} or β ( α ) > 1 {\displaystyle \beta (\alpha )>1} has an unbounded simple continued fraction and hence M ( α ) = {\displaystyle M(\alpha )=\infty } .

For rational numbers r {\displaystyle r} it may be defined M ( r ) = 0 {\displaystyle M(r)=0} .

Other results

The values M ( e ) = {\displaystyle M(e)=\infty } and μ ( e ) = 2 {\displaystyle \mu (e)=2} imply that the inequality 0 < | e p q | < 1 A q 2 {\displaystyle 0<\left|e-{\frac {p}{q}}\right|<{\frac {1}{Aq^{2}}}} has for all A R + {\displaystyle A\in \mathbb {R} ^{+}} infinitely many solutions p q Q {\displaystyle {\frac {p}{q}}\in \mathbb {Q} } while the inequality 0 < | e p q | < 1 q 2 + ε {\displaystyle 0<\left|e-{\frac {p}{q}}\right|<{\frac {1}{q^{2+\varepsilon }}}} has for all ε R + {\displaystyle \varepsilon \in \mathbb {R} ^{+}} only at most finitely many solutions p q Q {\displaystyle {\frac {p}{q}}\in \mathbb {Q} } . This gives rise to the question what the best upper bound is. The answer is given by:[31]

0 < | e p q | < ln ln q ( 2 + ε ) q 2 ln q {\displaystyle 0<\left|e-{\frac {p}{q}}\right|<{\frac {\ln \ln q}{(2+\varepsilon )q^{2}\ln q}}}

which is satisfied by infinitely many p q Q {\displaystyle {\frac {p}{q}}\in \mathbb {Q} } for ε < 0 {\displaystyle \varepsilon <0} but not for ε > 0 {\displaystyle \varepsilon >0} .

This makes the number e {\displaystyle e} alongside the rationals and quadratic irrationals an exception to the fact that for almost all real numbers α R {\displaystyle \alpha \in \mathbb {R} } the inequality below has infinitely many solutions p q Q {\displaystyle {\frac {p}{q}}\in \mathbb {Q} } :[32]

0 < | α p q | < 1 q 2 ln q {\displaystyle 0<\left|\alpha -{\frac {p}{q}}\right|<{\frac {1}{q^{2}\ln q}}}

Mahler's generalization

Kurt Mahler extended the concept of an irrationality measure and defined a so-called transcendence measure, drawing on the idea of a Liouville number and partitioning the transcendental numbers into three distinct classes.[3]

Mahler's irrationality measure

Instead of taking for a given real number α {\displaystyle \alpha } the difference | α p / q | {\displaystyle |\alpha -p/q|} with p / q Q {\displaystyle p/q\in \mathbb {Q} } , one may instead focus on term | q α p | = | L ( α ) | {\displaystyle |q\alpha -p|=|L(\alpha )|} with p , q Z {\displaystyle p,q\in \mathbb {Z} } and deg L = 1 {\displaystyle \deg L=1} . Consider the following inequality:

0 < | q α p | max ( | p | , | q | ) ω {\displaystyle 0<|q\alpha -p|\leq \max(|p|,|q|)^{-\omega }} with p , q Z {\displaystyle p,q\in \mathbb {Z} } and ω R 0 + {\displaystyle \omega \in \mathbb {R} _{0}^{+}} .

Define M {\displaystyle M} as the set of all ω R 0 + {\displaystyle \omega \in \mathbb {R} _{0}^{+}} for which infinitely many solutions p , q Z {\displaystyle p,q\in \mathbb {Z} } exist, such that the inequality is satisfied. Then ω 1 ( α ) = sup M {\displaystyle \omega _{1}(\alpha )=\sup M} is Mahler's irrationality measure. It gives ω 1 ( p / q ) = 0 {\displaystyle \omega _{1}(p/q)=0} for rational numbers, ω 1 ( x 0 ) = 1 {\displaystyle \omega _{1}(x_{0})=1} for algebraic irrational numbers and in general ω 1 ( α ) = μ ( α ) 1 {\displaystyle \omega _{1}(\alpha )=\mu (\alpha )-1} , where μ ( α ) {\displaystyle \mu (\alpha )} denotes the irrationality exponent.

Transcendence measure

Mahler's irrationality measure can be generalized as follows:[2][3] Take P {\displaystyle P} to be a polynomial with deg P n Z + {\displaystyle \deg P\leq n\in \mathbb {Z} ^{+}} and integer coefficients a i Z {\displaystyle a_{i}\in \mathbb {Z} } . Then define a height function H ( P ) = max ( | a 0 | , | a 1 | , . . . , | a n | ) {\displaystyle H(P)=\max(|a_{0}|,|a_{1}|,...,|a_{n}|)} and consider for real numbers α {\displaystyle \alpha } the inequality:

0 < | P ( α ) | H ( P ) ω {\displaystyle 0<|P(\alpha )|\leq H(P)^{-\omega }} with ω R 0 + {\displaystyle \omega \in \mathbb {R} _{0}^{+}} .

Set M {\displaystyle M} to be the set of all ω R 0 + {\displaystyle \omega \in \mathbb {R} _{0}^{+}} for which infinitely many such polynomials exist, that keep the inequality is satisfied. Further define ω n ( α ) = sup M {\displaystyle \omega _{n}(\alpha )=\sup M} for all n Z + {\displaystyle n\in \mathbb {Z} ^{+}} with ω 1 ( α ) {\displaystyle \omega _{1}(\alpha )} being the above irrationality measure, ω 2 ( α ) {\displaystyle \omega _{2}(\alpha )} being a non-quadraticity measure, etc.

Then Mahler's transcendence measure is given by:

ω ( α ) = lim sup n ω n ( α ) {\displaystyle \omega (\alpha )=\limsup _{n\to \infty }\omega _{n}(\alpha )} .

The transcendental numbers can now be divided into the following three classes:

If for all n Z + {\displaystyle n\in \mathbb {Z} ^{+}} the value of ω n ( α ) {\displaystyle \omega _{n}(\alpha )} is finite and ω ( α ) {\displaystyle \omega (\alpha )} is finite as well, α {\displaystyle \alpha } is called an S-number.

If for all n Z + {\displaystyle n\in \mathbb {Z} ^{+}} the value of ω n ( α ) {\displaystyle \omega _{n}(\alpha )} is finite but ω ( α ) {\displaystyle \omega (\alpha )} is infinite, α {\displaystyle \alpha } is called an T-number.

If there exists a positive integer N {\displaystyle N} such that for all n N {\displaystyle n\geq N} the ω n ( α ) {\displaystyle \omega _{n}(\alpha )} are infinite, α {\displaystyle \alpha } is called an U-number.

The number α {\displaystyle \alpha } is algebraic if and only if ω ( α ) = 0 {\displaystyle \omega (\alpha )=0} .

Almost all numbers are S-numbers, however the Liouville numbers are a subset of the U-numbers.

Linear independence measure

Another generalization of Mahler's irrationality measure gives a linear independence measure.[2][8] For real numbers α 1 , . . . , α n R {\displaystyle \alpha _{1},...,\alpha _{n}\in \mathbb {R} } consider the inequality

0 < | c 1 α 1 + . . . + c n α n | max ( | c 1 | , . . . , | c n | ) ν {\displaystyle 0<|c_{1}\alpha _{1}+...+c_{n}\alpha _{n}|\leq \max(|c_{1}|,...,|c_{n}|)^{-\nu }} with c 1 , . . . , c n Z {\displaystyle c_{1},...,c_{n}\in \mathbb {Z} } and ω R 0 + {\displaystyle \omega \in \mathbb {R} _{0}^{+}} .

Define M {\displaystyle M} as the set of all ν R 0 + {\displaystyle \nu \in \mathbb {R} _{0}^{+}} for which infinitely many solutions c 1 , . . . c n Z {\displaystyle c_{1},...c_{n}\in \mathbb {Z} } exist, such that the inequality is satisfied. Then ν ( α 1 , . . . , α n ) = sup M {\displaystyle \nu (\alpha _{1},...,\alpha _{n})=\sup M} is the linear independence measure.

If the α 1 , . . . , α n {\displaystyle \alpha _{1},...,\alpha _{n}} are linearly dependent over Q {\displaystyle \mathbb {\mathbb {Q} } } then ν ( α 1 , . . . , α n ) = 0 {\displaystyle \nu (\alpha _{1},...,\alpha _{n})=0} .

If 1 , α 1 , . . . , α n {\displaystyle 1,\alpha _{1},...,\alpha _{n}} are algebraic and linearly independent over Q {\displaystyle \mathbb {\mathbb {Q} } } then ν ( 1 , α 1 , . . . , α n ) n {\displaystyle \nu (1,\alpha _{1},...,\alpha _{n})\leq n} .[33]

It is further ν ( 1 , α ) = ω 1 ( α ) = μ ( α ) 1 {\displaystyle \nu (1,\alpha )=\omega _{1}(\alpha )=\mu (\alpha )-1} .

Other generalizations

Koksma’s generalization

Jurjen Koksma in 1939 proposed another generalization, similar to that of Mahler, based on approximations of real numbers by algebraic numbers.[3][34]

For a given real number α {\displaystyle \alpha } take consider algebraic numbers β {\displaystyle \beta } of degree at most n {\displaystyle n} . Define a height function H ( β ) = H ( P ) {\displaystyle H(\beta )=H(P)} , where P {\displaystyle P} is the characteristic polynomial of β {\displaystyle \beta } and consider the inequality:

0 < | α β | H ( β ) ω 1 {\displaystyle 0<|\alpha -\beta |\leq H(\beta )^{-\omega ^{*}-1}} with ω R 0 + {\displaystyle \omega ^{*}\in \mathbb {R} _{0}^{+}} .

Set M {\displaystyle M} to be the set of all ω R 0 + {\displaystyle \omega ^{*}\in \mathbb {R} _{0}^{+}} for which infinitely many such algebraic numbers β {\displaystyle \beta } exist, that keep the inequality is satisfied. Further define ω n ( α ) = sup M {\displaystyle \omega _{n}^{*}(\alpha )=\sup M} for all n Z + {\displaystyle n\in \mathbb {Z} ^{+}} with ω 1 ( α ) = μ ( α ) 1 {\displaystyle \omega _{1}^{*}(\alpha )=\mu (\alpha )-1} being an irrationality measure, ω 2 ( α ) {\displaystyle \omega _{2}^{*}(\alpha )} being a non-quadraticity measure[12], etc.

Then Koksma's transcendence measure is given by:

ω ( α ) = lim sup n ω n ( α ) {\displaystyle \omega ^{*}(\alpha )=\limsup _{n\to \infty }\omega _{n}^{*}(\alpha )} .

Simultaneous approximations of real numbers

Given a real number α R {\displaystyle \alpha \in \mathbb {R} } an irrationality measure of α {\displaystyle \alpha } quantifies how well it can be approximated by rational numbers p q {\displaystyle {\frac {p}{q}}} with denominator q Z + {\displaystyle q\in \mathbb {Z} ^{+}} . If α {\displaystyle \alpha } is taken to be an algebraic number that is also irrational one may obtain that the inequality

0 < | α p q | < 1 q μ {\displaystyle 0<\left|\alpha -{\frac {p}{q}}\right|<{\frac {1}{q^{\mu }}}}

has only at most finitely many solutions p q Q {\displaystyle {\frac {p}{q}}\in \mathbb {Q} } for μ > 2 {\displaystyle \mu >2} . This is known as Roth's theorem.

This can be generalized: Given a set of real numbers α 1 , . . . , α n R {\displaystyle \alpha _{1},...,\alpha _{n}\in \mathbb {R} } one can quantify how well they can be approximated simultaneously by rational numbers p 1 q , . . . , p n q {\displaystyle {\frac {p_{1}}{q}},...,{\frac {p_{n}}{q}}} with the same denominator q Z + {\displaystyle q\in \mathbb {Z} ^{+}} . If the α i {\displaystyle \alpha _{i}} are taken to be an algebraic number that, such that 1 , α 1 , . . . , α n {\displaystyle 1,\alpha _{1},...,\alpha _{n}} are linearly independent over the rational numbers Q {\displaystyle \mathbb {Q} } it follows that the inequalities

0 < | α i p i q | < 1 q μ , i { 1 , . . . , n } {\displaystyle 0<\left|\alpha _{i}-{\frac {p_{i}}{q}}\right|<{\frac {1}{q^{\mu }}},\forall i\in \{1,...,n\}}

have only at most finitely many solutions ( p 1 q , . . . , p n q ) Q n {\displaystyle \left({\frac {p_{1}}{q}},...,{\frac {p_{n}}{q}}\right)\in \mathbb {Q} ^{n}} for μ > 1 + 1 n {\displaystyle \mu >1+{\frac {1}{n}}} . This result is due to Wolfgang M. Schmidt.[35][36]

See also

References

  1. ^ a b c d e Sondow, Jonathan (2004). "Irrationality Measures, Irrationality Bases, and a Theorem of Jarnik". arXiv:math/0406300.
  2. ^ a b c Parshin, A. N.; Shafarevich, I. R. (2013-03-09). Number Theory IV: Transcendental Numbers. Springer Science & Business Media. ISBN 978-3-662-03644-0.
  3. ^ a b c d e f Bugeaud, Yann (2012). Distribution modulo one and Diophantine approximation. Cambridge Tracts in Mathematics. Vol. 193. Cambridge: Cambridge University Press. doi:10.1017/CBO9781139017732. ISBN 978-0-521-11169-0. MR 2953186. Zbl 1260.11001.
  4. ^ Tao, Terence (2009). "245B, Notes 9: The Baire category theorem and its Banach space consequences". What's new. Retrieved 2024-09-08.
  5. ^ Bugeaud, Yann (2011). "On the rational approximation to the Thue–Morse–Mahler numbers". Annales de l'Institut Fourier. 61 (5): 2065–2076. doi:10.5802/aif.2666. ISSN 1777-5310.
  6. ^ a b c d e Weisstein, Eric W. "Irrationality Measure". mathworld.wolfram.com. Retrieved 2020-10-14.
  7. ^ Nesterenko, Yu. V. (2010-10-01). "On the irrationality exponent of the number ln 2". Mathematical Notes. 88 (3): 530–543. doi:10.1134/S0001434610090257. ISSN 1573-8876. S2CID 120685006.
  8. ^ a b Wu, Qiang (2003). "On the Linear Independence Measure of Logarithms of Rational Numbers". Mathematics of Computation. 72 (242): 901–911. ISSN 0025-5718.
  9. ^ Bouchelaghem, Abderraouf; He, Yuxin; Li, Yuanhang; Wu, Qiang (2024-03-01). "On the linear independence measures of logarithms of rational numbers. II". J. Korean Math. Soc. 61 (2): 293–307. doi:10.4134/JKMS.j230133.
  10. ^ Sal’nikova, E. S. (2008-04-01). "Diophantine approximations of log 2 and other logarithms". Mathematical Notes. 83 (3): 389–398. doi:10.1134/S0001434608030097. ISSN 1573-8876.
  11. ^ "Symmetrized polynomials in a problem of estimating of the irrationality measure of number ln 3". www.mathnet.ru. Retrieved 2020-10-14.
  12. ^ a b c Polyanskii, Alexandr (2015-01-27), On the irrationality measure of certain numbers, doi:10.48550/arXiv.1501.06752, retrieved 2024-08-22
  13. ^ a b Polyanskii, A. A. (2018-03-01). "On the Irrationality Measures of Certain Numbers. II". Mathematical Notes. 103 (3): 626–634. doi:10.1134/S0001434618030306. ISSN 1573-8876. S2CID 125251520.
  14. ^ Androsenko, V. A. (2015). "Irrationality measure of the number \frac{\pi}{\sqrt{3}}". Izvestiya: Mathematics. 79 (1): 1–17. doi:10.1070/im2015v079n01abeh002731. ISSN 1064-5632. S2CID 123775303.
  15. ^ Zeilberger, Doron; Zudilin, Wadim (2020-01-07). "The irrationality measure of π is at most 7.103205334137...". Moscow Journal of Combinatorics and Number Theory. 9 (4): 407–419. arXiv:1912.06345. doi:10.2140/moscow.2020.9.407. S2CID 209370638.
  16. ^ Alekseyev, Max A. (2011). "On convergence of the Flint Hills series". arXiv:1104.5100 [math.CA].
  17. ^ Weisstein, Eric W. "Flint Hills Series". MathWorld.
  18. ^ Meiburg, Alex (2022). "Bounds on Irrationality Measures and the Flint-Hills Series". arXiv:2208.13356 [math.NT].
  19. ^ Zudilin, Wadim (2014-06-01). "Two hypergeometric tales and a new irrationality measure of ζ(2)". Annales mathématiques du Québec. 38 (1): 101–117. arXiv:1310.1526. doi:10.1007/s40316-014-0016-0. ISSN 2195-4763. S2CID 119154009.
  20. ^ Bashmakova, M. G.; Salikhov, V. Kh. (2019). "Об оценке меры иррациональности arctg 1/2". Чебышевский сборник. 20 (4 (72)): 58–68. ISSN 2226-8383.
  21. ^ Tomashevskaya, E. B. "On the irrationality measure of the number log 5+pi/2 and some other numbers". www.mathnet.ru. Retrieved 2020-10-14.
  22. ^ Salikhov, Vladislav K.; Bashmakova, Mariya G. (2022). "On rational approximations for some values of arctan(s/r) for natural s and r, s". Moscow Journal of Combinatorics and Number Theory. 11 (2): 181–188. doi:10.2140/moscow.2022.11.181. ISSN 2220-5438.
  23. ^ Salikhov, V. Kh.; Bashmakova, M. G. (2020-12-01). "On Irrationality Measure of Some Values of $\operatorname{arctg} \frac{1}{n}$". Russian Mathematics. 64 (12): 29–37. doi:10.3103/S1066369X2012004X. ISSN 1934-810X.
  24. ^ Waldschmidt, Michel (2008), "Elliptic Functions and Transcendence", Surveys in Number Theory, Developments in Mathematics 17, Springer Verlag, pp. 143–188, retrieved 2024-09-10
  25. ^ Duverney, Daniel; Shiokawa, Iekata (2020-01-01). "Irrationality exponents of numbers related with Cahen's constant". Monatshefte für Mathematik. 191 (1): 53–76. doi:10.1007/s00605-019-01335-0. ISSN 1436-5081.
  26. ^ Amou, Masaaki (1991-02-01). "Approximation to certain transcendental decimal fractions by algebraic numbers". Journal of Number Theory. 37 (2): 231–241. doi:10.1016/S0022-314X(05)80039-3. ISSN 0022-314X.
  27. ^ Sondow, Jonathan (2003-07-23), An irrationality measure for Liouville numbers and conditional measures for Euler's constant, doi:10.48550/arXiv.math/0307308, retrieved 2024-09-08
  28. ^ Hurwitz, A. (1891). "Ueber die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche (On the approximate representation of irrational numbers by rational fractions)". Mathematische Annalen (in German). 39 (2): 279–284. doi:10.1007/BF01206656. JFM 23.0222.02. S2CID 119535189.
  29. ^ LeVeque, William (1977). Fundamentals of Number Theory. Addison-Wesley Publishing Company, Inc. pp. 251–254. ISBN 0-201-04287-8.
  30. ^ Hancl, Jaroslav (January 2016). "Second basic theorem of Hurwitz". Lithuanian Mathematical Journal. 56: 72–76. doi:10.1007/s10986-016-9305-4. S2CID 124639896.
  31. ^ Davis, C. S. (1978). "Rational approximations to e". Journal of the Australian Mathematical Society. 25 (4): 497–502. doi:10.1017/S1446788700021480. ISSN 1446-8107.
  32. ^ Borwein, Jonathan M. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity. Wiley.
  33. ^ Waldschmidt, Michel (2004-01-24), Open Diophantine Problems, doi:10.48550/arXiv.math/0312440, retrieved 2024-09-10
  34. ^ Baker, Alan (1979). Transcendental number theory (Repr. with additional material ed.). Cambridge: Cambridge Univ. Pr. ISBN 978-0-521-20461-3.
  35. ^ Schmidt, Wolfgang M. (1972). "Norm Form Equations". Annals of Mathematics. 96 (3): 526–551. doi:10.2307/1970824. ISSN 0003-486X.
  36. ^ Schmidt, Wolfgang M. (1996). Diophantine approximation. Lecture notes in mathematics. Berlin ; New York: Springer. ISBN 978-3-540-09762-4.