Christ–Kiselev maximal inequality

In mathematics, the Christ–Kiselev maximal inequality is a maximal inequality for filtrations, named for mathematicians Michael Christ and Alexander Kiselev.[1]

Continuous filtrations

A continuous filtration of ( M , μ ) {\displaystyle (M,\mu )} is a family of measurable sets { A α } α R {\displaystyle \{A_{\alpha }\}_{\alpha \in \mathbb {R} }} such that

  1. A α M {\displaystyle A_{\alpha }\nearrow M} , α R A α = {\displaystyle \bigcap _{\alpha \in \mathbb {R} }A_{\alpha }=\emptyset } , and μ ( A β A α ) < {\displaystyle \mu (A_{\beta }\setminus A_{\alpha })<\infty } for all β > α {\displaystyle \beta >\alpha } (stratific)
  2. lim ε 0 + μ ( A α + ε A α ) = lim ε 0 + μ ( A α A α + ε ) = 0 {\displaystyle \lim _{\varepsilon \to 0^{+}}\mu (A_{\alpha +\varepsilon }\setminus A_{\alpha })=\lim _{\varepsilon \to 0^{+}}\mu (A_{\alpha }\setminus A_{\alpha +\varepsilon })=0} (continuity)

For example, R = M {\displaystyle \mathbb {R} =M} with measure μ {\displaystyle \mu } that has no pure points and

A α := { { | x | α } , α > 0 , , α 0. {\displaystyle A_{\alpha }:={\begin{cases}\{|x|\leq \alpha \},&\alpha >0,\\\emptyset ,&\alpha \leq 0.\end{cases}}}

is a continuous filtration.

Continuum version

Let 1 p < q {\displaystyle 1\leq p<q\leq \infty } and suppose T : L p ( M , μ ) L q ( N , ν ) {\displaystyle T:L^{p}(M,\mu )\to L^{q}(N,\nu )} is a bounded linear operator for σ {\displaystyle \sigma -} finite ( M , μ ) , ( N , ν ) {\displaystyle (M,\mu ),(N,\nu )} . Define the Christ–Kiselev maximal function

T f := sup α | T ( f χ α ) | , {\displaystyle T^{*}f:=\sup _{\alpha }|T(f\chi _{\alpha })|,}

where χ α := χ A α {\displaystyle \chi _{\alpha }:=\chi _{A_{\alpha }}} . Then T : L p ( M , μ ) L q ( N , ν ) {\displaystyle T^{*}:L^{p}(M,\mu )\to L^{q}(N,\nu )} is a bounded operator, and

T f q 2 ( p 1 q 1 ) ( 1 2 ( p 1 q 1 ) ) 1 T f p . {\displaystyle \|T^{*}f\|_{q}\leq 2^{-(p^{-1}-q^{-1})}(1-2^{-(p^{-1}-q^{-1})})^{-1}\|T\|\|f\|_{p}.}

Discrete version

Let 1 p < q {\displaystyle 1\leq p<q\leq \infty } , and suppose W : p ( Z ) L q ( N , ν ) {\displaystyle W:\ell ^{p}(\mathbb {Z} )\to L^{q}(N,\nu )} is a bounded linear operator for σ {\displaystyle \sigma -} finite ( M , μ ) , ( N , ν ) {\displaystyle (M,\mu ),(N,\nu )} . Define, for a p ( Z ) {\displaystyle a\in \ell ^{p}(\mathbb {Z} )} ,

( χ n a ) := { a k , | k | n 0 , otherwise . {\displaystyle (\chi _{n}a):={\begin{cases}a_{k},&|k|\leq n\\0,&{\text{otherwise}}.\end{cases}}}

and sup n Z 0 | W ( χ n a ) | =: W ( a ) {\displaystyle \sup _{n\in \mathbb {Z} ^{\geq 0}}|W(\chi _{n}a)|=:W^{*}(a)} . Then W : p ( Z ) L q ( N , ν ) {\displaystyle W^{*}:\ell ^{p}(\mathbb {Z} )\to L^{q}(N,\nu )} is a bounded operator.

Here, A α = { [ α , α ] , α > 0 , α 0 {\displaystyle A_{\alpha }={\begin{cases}[-\alpha ,\alpha ],&\alpha >0\\\emptyset ,&\alpha \leq 0\end{cases}}} .

The discrete version can be proved from the continuum version through constructing T : L p ( R , d x ) L q ( N , ν ) {\displaystyle T:L^{p}(\mathbb {R} ,dx)\to L^{q}(N,\nu )} .[2]

Applications

The Christ–Kiselev maximal inequality has applications to the Fourier transform and convergence of Fourier series, as well as to the study of Schrödinger operators.[1][2]

References

  1. ^ a b M. Christ, A. Kiselev, Maximal functions associated to filtrations. J. Funct. Anal. 179 (2001), no. 2, 409--425. "Archived copy" (PDF). Archived from the original (PDF) on 2014-05-14. Retrieved 2014-05-12.{{cite web}}: CS1 maint: archived copy as title (link)
  2. ^ a b Chapter 9 - Harmonic Analysis "Archived copy" (PDF). Archived from the original (PDF) on 2014-05-13. Retrieved 2014-05-12.{{cite web}}: CS1 maint: archived copy as title (link)