Fox H-Funktion

In der Mathematik ist die Fox H-Funktion H ( x ) {\displaystyle H(x)} eine Verallgemeinerung der Meijer G-Funktion und der Fox–Wright Funktion, eingeführt von Charles Fox (1961). Die die Definition ist gegeben durch ein Mellin–Barnes-Integral

H p , q m , n [ z | ( a 1 , A 1 ) ( a 2 , A 2 ) ( a p , A p ) ( b 1 , B 1 ) ( b 2 , B 2 ) ( b q , B q ) ] = 1 2 π i L j = 1 m Γ ( b j + B j s ) j = 1 n Γ ( 1 a j A j s ) j = m + 1 q Γ ( 1 b j B j s ) j = n + 1 p Γ ( a j + A j s ) z s d s , {\displaystyle H_{p,q}^{\,m,n}\!\left[z\left|{\begin{matrix}(a_{1},A_{1})&(a_{2},A_{2})&\ldots &(a_{p},A_{p})\\(b_{1},B_{1})&(b_{2},B_{2})&\ldots &(b_{q},B_{q})\end{matrix}}\right.\right]={\frac {1}{2\pi i}}\int _{L}{\frac {\prod _{j=1}^{m}\Gamma (b_{j}+B_{j}s)\,\prod _{j=1}^{n}\Gamma (1-a_{j}-A_{j}s)}{\prod _{j=m+1}^{q}\Gamma (1-b_{j}-B_{j}s)\,\prod _{j=n+1}^{p}\Gamma (a_{j}+A_{j}s)}}z^{-s}\,ds,}

wobei L {\displaystyle L} ein bestimmter Weg ist, der die Pole der beiden Faktoren im Zähler trennt.

Plot of the Fox H function H((((a 1,α 1),...,(a n,α n)),((a n+1,α n+1),...,(a p,α p)),(((b 1,β 1),...,(b m,β m)),in ((b m+1,β m+1),...,(b q,β q))),z) with H(((),()),(((-1,½)),()),z)
Plot of the Fox H function H((((a 1,α 1),...,(a n,α n)),((a n+1,α n+1),...,(a p,α p)),(((b 1,β 1),...,(b m,β m)),in ((b m+1,β m+1),...,(b q,β q))),z) with H(((),()),(((-1,½)),()),z)

Beziehung zu anderen Funktionen

Lambertsche W-Funktion

Eine Relation der Fox H-Funktion zu den Zweig -1 der Lambertschen W-Funktion ist gegeben durch

W 1 ( α z ) ¯ = { lim β α [ α 2 ( ( α β ) z ) α β β H 1 , 2 1 , 1 ( ( α + β β , α β ) ( 0 , 1 ) , ( α β , α β β ) ( ( α β ) z ) α β 1 ) ] , falls | z | < 1 e | α | lim β α [ α 2 ( ( α β ) z ) α β β H 2 , 1 1 , 1 ( ( 1 , 1 ) , ( β α β , α β β ) ( α β , α β ) ( ( α β ) z ) 1 α β ) ] , andernfalls {\displaystyle {\overline {\operatorname {W} _{-1}\left(-\alpha \cdot z\right)}}={\begin{cases}\lim _{\beta \to \alpha ^{-}}\left[{\frac {\alpha ^{2}\cdot \left(\left(\alpha -\beta \right)\cdot z\right)^{\frac {\alpha }{\beta }}}{\beta }}\cdot \operatorname {H} _{1,\,2}^{1,\,1}\left({\begin{matrix}\left({\frac {\alpha +\beta }{\beta }},\,{\frac {\alpha }{\beta }}\right)\\\left(0,\,1\right),\,\left(-{\frac {\alpha }{\beta }},\,{\frac {\alpha -\beta }{\beta }}\right)\\\end{matrix}}\mid -\left(\left(\alpha -\beta \right)\cdot z\right)^{{\frac {\alpha }{\beta }}-1}\right)\right],\,{\text{falls}}\left|z\right|<{\frac {1}{e\left|\alpha \right|}}\\\lim _{\beta \to \alpha ^{-}}\left[{\frac {\alpha ^{2}\cdot \left(\left(\alpha -\beta \right)\cdot z\right)^{-{\frac {\alpha }{\beta }}}}{\beta }}\cdot \operatorname {H} _{2,\,1}^{1,\,1}\left({\begin{matrix}\left(1,\,1\right),\,\left({\frac {\beta -\alpha }{\beta }},\,{\frac {\alpha -\beta }{\beta }}\right)\\\left(-{\frac {\alpha }{\beta }},\,{\frac {\alpha }{\beta }}\right)\\\end{matrix}}\mid -\left(\left(\alpha -\beta \right)\cdot z\right)^{1-{\frac {\alpha }{\beta }}}\right)\right],\,{\text{andernfalls}}\\\end{cases}}}

wobei z ¯ {\displaystyle {\overline {z}}} das komplex-konjugierte von z {\displaystyle z} ist.[1]

Meijer G-Funktion

Vergleich zur Meijer G-Funktion

G p , q m , n ( a 1 , , a p b 1 , , b q | z ) = 1 2 π i L j = 1 m Γ ( b j s ) j = 1 n Γ ( 1 a j + s ) j = m + 1 q Γ ( 1 b j + s ) j = n + 1 p Γ ( a j s ) z s d s . {\displaystyle G_{p,q}^{\,m,n}\!\left(\left.{\begin{matrix}a_{1},\dots ,a_{p}\\b_{1},\dots ,b_{q}\end{matrix}}\;\right|\,z\right)={\frac {1}{2\pi i}}\int _{L}{\frac {\prod _{j=1}^{m}\Gamma (b_{j}-s)\,\prod _{j=1}^{n}\Gamma (1-a_{j}+s)}{\prod _{j=m+1}^{q}\Gamma (1-b_{j}+s)\,\prod _{j=n+1}^{p}\Gamma (a_{j}-s)}}\,z^{s}\,ds.}

Der Spezialfall, für welchen die Fox H-Funktion zur Meijer G-Funktion reduziert wird, ist bei A j = B k = C , C > 0 {\displaystyle A_{j}=B_{k}=C,C>0} für j = 1 p {\displaystyle j=1\ldots p} und k = 1 q {\displaystyle k=1\ldots q} .

H p , q m , n [ z | ( a 1 , C ) ( a 2 , C ) ( a p , C ) ( b 1 , C ) ( b 2 , C ) ( b q , C ) ] = 1 C G p , q m , n ( a 1 , , a p b 1 , , b q | z 1 / C ) . {\displaystyle H_{p,q}^{\,m,n}\!\left[z\left|{\begin{matrix}(a_{1},C)&(a_{2},C)&\ldots &(a_{p},C)\\(b_{1},C)&(b_{2},C)&\ldots &(b_{q},C)\end{matrix}}\right.\right]={\frac {1}{C}}G_{p,q}^{\,m,n}\!\left(\left.{\begin{matrix}a_{1},\dots ,a_{p}\\b_{1},\dots ,b_{q}\end{matrix}}\;\right|\,z^{1/C}\right).}

Eine Verallgemeinerung der Fox H-Funktion ist geben von Ram Kishore Saxena[2] und Innayat Hussain AA (1987). Für eine weitere Verallgemeinerung, welche sich in der Physik und Statistik als nützlich erweisen wie A.M.Mathai und Ram Kishore Saxena zeigten,[3] siehe Rathie (1997).

Einzelnachweise

  1. Pushpa Narayan and Luan Carlos de Sena Monteiro Rathie and Ozelim: On the Relation between Lambert W-Function and Generalized. In: Researchgate. Abgerufen am 1. März 2023 (englisch, hypergeometric, functions). 
  2. A. M. Mathai, R. K. Saxena: Generalized hypergeometric functions with applications in statistics and physical sciences. Springer, Berlin, New York 1973, ISBN 978-0-387-06482-6 (englisch). 
  3. Mathai, A. M.: The H-function with applications in statistics and other disciplines. Wiley, New York 1978, ISBN 978-0-470-26380-8 (englisch).