Número cabtaxi

Aquest article o secció no cita les fonts o necessita més referències per a la seva verificabilitat.

Un número cabtaxi, en matemàtiques, el n número cabtaxi, sovint anomenat Cabtaxi(n), és definit com el més petit enter que es pot escriure en n maneres o maneres diferents (en un ordre de termes aproximats) com a suma de dos cubs positius, nuls o negatius. Els nombres cabtaxi existeixen per a tot n ≥ 1; fins a abril de 2014 es coneixen 10 nombres cabtaxi:

C a b t a x i ( 1 ) = 1 = 1 3 + 0 3 {\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (1)&=&1&=&1^{3}+0^{3}\end{matrix}}}
C a b t a x i ( 2 ) = 91 = 3 3 + 4 3 = 6 3 5 3 {\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (2)&=&91&=&3^{3}+4^{3}\\&&&=&6^{3}-5^{3}\end{matrix}}}
C a b t a x i ( 3 ) = 728 = 6 3 + 8 3 = 9 3 1 3 = 12 3 10 3 {\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (3)&=&728&=&6^{3}+8^{3}\\&&&=&9^{3}-1^{3}\\&&&=&12^{3}-10^{3}\end{matrix}}}
C a b t a x i ( 4 ) = 2741256 = 108 3 + 114 3 = 140 3 14 3 = 168 3 126 3 = 207 3 183 3 {\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (4)&=&2741256&=&108^{3}+114^{3}\\&&&=&140^{3}-14^{3}\\&&&=&168^{3}-126^{3}\\&&&=&207^{3}-183^{3}\end{matrix}}}
C a b t a x i ( 5 ) = 6017193 = 166 3 + 113 3 = 180 3 + 57 3 = 185 3 68 3 = 209 3 146 3 = 246 3 207 3 {\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (5)&=&6017193&=&166^{3}+113^{3}\\&&&=&180^{3}+57^{3}\\&&&=&185^{3}-68^{3}\\&&&=&209^{3}-146^{3}\\&&&=&246^{3}-207^{3}\end{matrix}}}
C a b t a x i ( 6 ) = 1412774811 = 963 3 + 804 3 = 1134 3 357 3 = 1155 3 504 3 = 1246 3 805 3 = 2115 3 2004 3 = 4746 3 4725 3 {\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (6)&=&1412774811&=&963^{3}+804^{3}\\&&&=&1134^{3}-357^{3}\\&&&=&1155^{3}-504^{3}\\&&&=&1246^{3}-805^{3}\\&&&=&2115^{3}-2004^{3}\\&&&=&4746^{3}-4725^{3}\end{matrix}}}
C a b t a x i ( 7 ) = 11302198488 = 1926 3 + 1608 3 = 1939 3 + 1589 3 = 2268 3 714 3 = 2310 3 1008 3 = 2492 3 1610 3 = 4230 3 4008 3 = 9492 3 9450 3 {\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (7)&=&11302198488&=&1926^{3}+1608^{3}\\&&&=&1939^{3}+1589^{3}\\&&&=&2268^{3}-714^{3}\\&&&=&2310^{3}-1008^{3}\\&&&=&2492^{3}-1610^{3}\\&&&=&4230^{3}-4008^{3}\\&&&=&9492^{3}-9450^{3}\end{matrix}}}
C a b t a x i ( 8 ) = 137513849003496 = 22944 3 + 50058 3 = 36547 3 + 44597 3 = 36984 3 + 44298 3 = 52164 3 16422 3 = 53130 3 23184 3 = 57316 3 37030 3 = 97290 3 92184 3 = 218316 3 217350 3 {\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (8)&=&137513849003496&=&22944^{3}+50058^{3}\\&&&=&36547^{3}+44597^{3}\\&&&=&36984^{3}+44298^{3}\\&&&=&52164^{3}-16422^{3}\\&&&=&53130^{3}-23184^{3}\\&&&=&57316^{3}-37030^{3}\\&&&=&97290^{3}-92184^{3}\\&&&=&218316^{3}-217350^{3}\end{matrix}}}
C a b t a x i ( 9 ) = 424910390480793000 = 645210 3 + 538680 3 = 649565 3 + 532315 3 = 752409 3 101409 3 = 759780 3 239190 3 = 773850 3 337680 3 = 834820 3 539350 3 = 1417050 3 1342680 3 = 3179820 3 3165750 3 = 5960010 3 5956020 3 {\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (9)&=&424910390480793000&=&645210^{3}+538680^{3}\\&&&=&649565^{3}+532315^{3}\\&&&=&752409^{3}-101409^{3}\\&&&=&759780^{3}-239190^{3}\\&&&=&773850^{3}-337680^{3}\\&&&=&834820^{3}-539350^{3}\\&&&=&1417050^{3}-1342680^{3}\\&&&=&3179820^{3}-3165750^{3}\\&&&=&5960010^{3}-5956020^{3}\end{matrix}}}
C a b t a x i ( 10 ) = 933528127886302221000 = 77480130 3 77428260 3 = 41337660 3 41154750 3 = 18421650 3 17454840 3 = 10852660 3 7011550 3 = 10060050 3 4389840 3 = 9877140 3 3109470 3 = 9781317 3 1318317 3 = 9773330 3 84560 3 = 8444345 3 + 6920095 3 = 8387730 3 + 7002840 3 {\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (10)&=&933528127886302221000&=&77480130^{3}-77428260^{3}\\&&&=&41337660^{3}-41154750^{3}\\&&&=&18421650^{3}-17454840^{3}\\&&&=&10852660^{3}-7011550^{3}\\&&&=&10060050^{3}-4389840^{3}\\&&&=&9877140^{3}-3109470^{3}\\&&&=&9781317^{3}-1318317^{3}\\&&&=&9773330^{3}-84560^{3}\\&&&=&8444345^{3}+6920095^{3}\\&&&=&8387730^{3}+7002840^{3}\end{matrix}}}

O en un gràfic més clar:

n Ca(n) a^3+b^3 Descobridor
1 1 1,0
2 91 3,4
6,-5
3 728 6,8
9,-1
12,-10
4 2741256 2421,19083
140,-14
168,-126
207,-183
5 6017193 166,113
180,57
185,-68
209,-146
246,-207
Randall L. Rathbun
6 1412774811 963,804
1134,-357
1155,-504
1246,-805
2115,-2004
4746,-4725
Randall L. Rathbun
7 11302198488 1926,1608
1939,1589
2268,-714
2310,-1008
2492,-1610
4230,- 4008
9492,-9450
Randall L. Rathbun
8 137513849003496 22944,50058
36547,44597
36984,44298
52164,-16422
53130,-23184
57316,-37030
97290,-92184
218316,-217350
Daniel J. Bernstein
9 424910390480793000 645210,538680
649565,532315
752409,-101409
759780,-239190
773850,-337680
834820,-539350
1417050,-1342680
3179820,-3165750
5960010,-5956020
Duncan Moore

Els nombres Cabtaxi(5), Cabtaxi(6) i Cabtaxi(7) han estat trobats per Randall L. Rathbun; i el Cabtaxi(8) per Daniel J. Bernstein, que ha demostrat que Cabtaxi(9) ≥ 1019, mentre que Duncan Moore, al 2005, trobà els nombres que correspondrien a Cabtaxi (9).

Vegeu també

  • Número taxicab.
  • Srinivāsa Aaiyangār Rāmānujan.